Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Mānoa, Honolulu, HI, USA.
Population Sciences in the Pacific Program-Cancer Epidemiology, Honolulu, HI, USA.
BMC Bioinformatics. 2020 Dec 3;21(Suppl 9):523. doi: 10.1186/s12859-020-03831-9.
Cancer is one of the leading causes of morbidity and mortality in the globe. Microbiological infections account for up to 20% of the total global cancer burden. The human microbiota within each organ system is distinct, and their compositional variation and interactions with the human host have been known to attribute detrimental and beneficial effects on tumor progression. With the advent of next generation sequencing (NGS) technologies, data generated from NGS is being used for pathogen detection in cancer. Numerous bioinformatics computational frameworks have been developed to study viral information from host-sequencing data and can be adapted to bacterial studies. This review highlights existing popular computational frameworks that utilize NGS data as input to decipher microbial composition, which output can predict functional compositional differences with clinically relevant applicability in the development of treatment and prevention strategies.
癌症是全球发病率和死亡率的主要原因之一。微生物感染占全球癌症负担的 20%。每个器官系统内的人类微生物群是不同的,它们的组成变化及其与人类宿主的相互作用已被证明对肿瘤进展有不利和有利的影响。随着下一代测序 (NGS) 技术的出现,NGS 产生的数据正被用于癌症中的病原体检测。已经开发了许多生物信息学计算框架来研究来自宿主测序数据的病毒信息,并且可以适应细菌研究。这篇综述强调了现有的流行计算框架,这些框架利用 NGS 数据作为输入来破译微生物组成,其输出可以预测与临床相关的功能性组成差异,在治疗和预防策略的发展中有实际应用。