Suppr超能文献

利用人类测序数据检测癌症中的组织相关微生物。

Tissue-associated microbial detection in cancer using human sequencing data.

机构信息

Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Mānoa, Honolulu, HI, USA.

Population Sciences in the Pacific Program-Cancer Epidemiology, Honolulu, HI, USA.

出版信息

BMC Bioinformatics. 2020 Dec 3;21(Suppl 9):523. doi: 10.1186/s12859-020-03831-9.

Abstract

Cancer is one of the leading causes of morbidity and mortality in the globe. Microbiological infections account for up to 20% of the total global cancer burden. The human microbiota within each organ system is distinct, and their compositional variation and interactions with the human host have been known to attribute detrimental and beneficial effects on tumor progression. With the advent of next generation sequencing (NGS) technologies, data generated from NGS is being used for pathogen detection in cancer. Numerous bioinformatics computational frameworks have been developed to study viral information from host-sequencing data and can be adapted to bacterial studies. This review highlights existing popular computational frameworks that utilize NGS data as input to decipher microbial composition, which output can predict functional compositional differences with clinically relevant applicability in the development of treatment and prevention strategies.

摘要

癌症是全球发病率和死亡率的主要原因之一。微生物感染占全球癌症负担的 20%。每个器官系统内的人类微生物群是不同的,它们的组成变化及其与人类宿主的相互作用已被证明对肿瘤进展有不利和有利的影响。随着下一代测序 (NGS) 技术的出现,NGS 产生的数据正被用于癌症中的病原体检测。已经开发了许多生物信息学计算框架来研究来自宿主测序数据的病毒信息,并且可以适应细菌研究。这篇综述强调了现有的流行计算框架,这些框架利用 NGS 数据作为输入来破译微生物组成,其输出可以预测与临床相关的功能性组成差异,在治疗和预防策略的发展中有实际应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7753/7713026/3da008e5f513/12859_2020_3831_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验