Suppr超能文献

医学成像中的诊断图像质量评估与分类:机遇与挑战

DIAGNOSTIC IMAGE QUALITY ASSESSMENT AND CLASSIFICATION IN MEDICAL IMAGING: OPPORTUNITIES AND CHALLENGES.

作者信息

Ma Jeffrey J, Nakarmi Ukash, Kin Cedric Yue Sik, Sandino Christopher M, Cheng Joseph Y, Syed Ali B, Wei Peter, Pauly John M, Vasanawala Shreyas S

机构信息

Department of Computing and Mathematical Sciences, California Institute of Technology.

Department of Radiology, Stanford University.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:337-340. doi: 10.1109/isbi45749.2020.9098735. Epub 2020 May 22.

Abstract

Magnetic Resonance Imaging (MRI) suffers from several artifacts, the most common of which are motion artifacts. These artifacts often yield images that are of non-diagnostic quality. To detect such artifacts, images are prospectively evaluated by experts for their diagnostic quality, which necessitates patient-revisits and rescans whenever non-diagnostic quality scans are encountered. This motivates the need to develop an automated framework capable of accessing medical image quality and detecting diagnostic and non-diagnostic images. In this paper, we explore several convolutional neural network-based frameworks for medical image quality assessment and investigate several challenges therein.

摘要

磁共振成像(MRI)存在多种伪影,其中最常见的是运动伪影。这些伪影常常产生质量无法用于诊断的图像。为了检测此类伪影,专家会对图像的诊断质量进行前瞻性评估,这就使得每当遇到质量无法用于诊断的扫描时,都需要患者再次就诊并重新扫描。这促使人们需要开发一个能够评估医学图像质量并检测诊断性和非诊断性图像的自动化框架。在本文中,我们探索了几种基于卷积神经网络的医学图像质量评估框架,并研究了其中的若干挑战。

相似文献

9
Brain MRI artefact detection and correction using convolutional neural networks.使用卷积神经网络进行脑 MRI 伪影检测和校正。
Comput Methods Programs Biomed. 2021 Feb;199:105909. doi: 10.1016/j.cmpb.2020.105909. Epub 2020 Dec 23.

引用本文的文献

2
Applications of Artificial Intelligence for Pediatric Cancer Imaging.人工智能在儿科癌症成像中的应用。
AJR Am J Roentgenol. 2024 Aug;223(2):e2431076. doi: 10.2214/AJR.24.31076. Epub 2024 May 23.
7
Automatic Artifact Detection Algorithm in Fetal MRI.胎儿磁共振成像中的自动伪影检测算法
Front Artif Intell. 2022 Jun 16;5:861791. doi: 10.3389/frai.2022.861791. eCollection 2022.
10
Five-star rating system for acceptable quality and dose in CT.CT 可接受质量和剂量的五星评级系统。
Eur Radiol. 2021 Dec;31(12):9161-9163. doi: 10.1007/s00330-021-08112-4. Epub 2021 Jun 11.

本文引用的文献

1
Deep Generative Adversarial Neural Networks for Compressive Sensing MRI.用于压缩感知 MRI 的深度生成对抗神经网络。
IEEE Trans Med Imaging. 2019 Jan;38(1):167-179. doi: 10.1109/TMI.2018.2858752. Epub 2018 Jul 23.
2
NIMA: Neural Image Assessment.NIMA:神经影像评估。
IEEE Trans Image Process. 2018 Apr 30. doi: 10.1109/TIP.2018.2831899.
5
Artifacts in magnetic resonance imaging.磁共振成像中的伪影。
Pol J Radiol. 2015 Feb 23;80:93-106. doi: 10.12659/PJR.892628. eCollection 2015.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验