Ohayon David, Hamidi-Sakr Amer, Surgailis Jokubas, Wustoni Shofarul, Dereli Busra, Wehbe Nimer, Nastase Stefan, Chen Xingxing, McCulloch Iain, Cavallo Luigi, Inal Sahika
Organic Bioelectronics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore.
J Am Chem Soc. 2025 Apr 16;147(15):12523-12533. doi: 10.1021/jacs.4c17579. Epub 2025 Apr 6.
Organic mixed ionic-electronic conductors (OMIECs) have emerged as essential materials for applications in bioelectronics, neuromorphics, and energy storage, owing to their ability to transport both ions and electrons. While significant progress has been made in understanding their operation, the role of noncompensating ions in polymer redox processes remains underexplored, particularly in the context of their impact on charge compensation and device performance. In this study, we systematically investigate the influence of noncompensating ions on the performance of n-type OMIECs with and without polar side chains, focusing on their interactions with electrolytes containing anions from the Hofmeister series. Our findings reveal a stark contrast in charging behavior and organic electrochemical transistor (OECT) performance based on side-chain chemistry. Polar oligoether side chains promote interactions with anions, resulting in significant performance variations. We demonstrate the critical role of polymer side-chain interactions with the different anions, where polyatomic anions capable of infiltrating the film degrade device performance, particularly in terms of transconductance and operational stability. In contrast, OMIECs without side chains exhibit performance independent of the noncompensating ion nature. Through electrochemical analysis, spectroscopic techniques, and molecular dynamics simulations, we provide a comprehensive understanding of how ion incorporation and polymer-electrolyte interactions shape device behavior. This study highlights the transformative role of side-chain functionality in tailoring the properties of the OMIEC and offers a design framework for high-performance OECTs, enabling advancements in biosensing, neuromorphic computing, and beyond.
有机混合离子-电子导体(OMIECs)因其能够同时传输离子和电子,已成为生物电子学、神经形态学和能量存储应用中的关键材料。尽管在理解其运作方面已取得重大进展,但非补偿离子在聚合物氧化还原过程中的作用仍未得到充分探索,特别是在它们对电荷补偿和器件性能的影响方面。在本研究中,我们系统地研究了非补偿离子对有无极性侧链的n型OMIECs性能的影响,重点关注它们与含有霍夫迈斯特系列阴离子的电解质的相互作用。我们的研究结果揭示了基于侧链化学的充电行为和有机电化学晶体管(OECT)性能的鲜明对比。极性低聚醚侧链促进与阴离子的相互作用,导致显著的性能变化。我们证明了聚合物侧链与不同阴离子相互作用的关键作用,其中能够渗透到薄膜中的多原子阴离子会降低器件性能,特别是在跨导和操作稳定性方面。相比之下,没有侧链的OMIECs的性能与非补偿离子的性质无关。通过电化学分析、光谱技术和分子动力学模拟,我们全面了解了离子掺入和聚合物-电解质相互作用如何塑造器件行为。这项研究突出了侧链功能在定制OMIEC性能方面的变革性作用,并为高性能OECTs提供了一个设计框架,推动了生物传感、神经形态计算等领域的发展。