Suppr超能文献

实施用于非计划再入院的人工智能模型的障碍。

Barriers to Implementing an Artificial Intelligence Model for Unplanned Readmissions.

作者信息

Baxter Sally L, Bass Jeremy S, Sitapati Amy M

机构信息

Health Department of Biomedical Informatics, University of California San Diego, La Jolla, California, United States.

Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, California, United States.

出版信息

ACI open. 2020 Jul;4(2):e108-e113. doi: 10.1055/s-0040-1716748.

Abstract

BACKGROUND

Electronic health record (EHR) vendors now offer "off-the-shelf" artificial intelligence (AI) models to client organizations. Our health system faced difficulties in promoting end-user utilization of a new AI model for predicting readmissions embedded in the EHR.

OBJECTIVES

The aim is to conduct a case study centered on identifying barriers to uptake/utilization.

METHODS

A qualitative study was conducted using interviews with stakeholders. The interviews were used to identify relevant stakeholders, understand current workflows, identify implementation barriers, and formulate future strategies.

RESULTS

We discovered substantial variation in existing workflows around readmissions. Some stakeholders did not perform any formal readmissions risk assessment. Others accustomed to using existing risk scores such as LACE+ had concerns about transitioning to a new model. Some stakeholders had existing workflows in place that could accommodate the new model, but they were not previously aware that the new model was in production. Concerns expressed by end-users included: whether the model's predictors were relevant to their work, need for adoption of additional workflow processes, need for training and change management, and potential for unintended consequences (e.g., increased health care resource utilization due to potentially over-referring discharged patients to home health services).

CONCLUSION

AI models for risk stratification, even if "off-the-shelf" by design, are unlikely to be "plug-and-play" in health care settings. Seeking out key stakeholders and defining clear use cases early in the implementation process can better facilitate utilization of these models.

摘要

背景

电子健康记录(EHR)供应商现在向客户机构提供“现成的”人工智能(AI)模型。我们的医疗系统在推动最终用户使用嵌入电子健康记录中的用于预测再入院的新AI模型时遇到了困难。

目的

旨在进行一项以识别采用/使用障碍为中心的案例研究。

方法

通过与利益相关者进行访谈开展了一项定性研究。这些访谈用于识别相关利益者、了解当前工作流程、识别实施障碍并制定未来策略。

结果

我们发现围绕再入院的现有工作流程存在很大差异。一些利益相关者没有进行任何正式的再入院风险评估。其他习惯使用现有风险评分(如LACE+)的人对过渡到新模型存在担忧。一些利益相关者已有可适应新模型的工作流程,但他们之前并不知道新模型已投入使用。最终用户表达的担忧包括:模型的预测因素是否与他们的工作相关、是否需要采用额外的工作流程、是否需要培训和变革管理,以及是否存在意外后果的可能性(例如,由于可能将出院患者过度转诊至家庭健康服务而导致医疗资源利用增加)。

结论

用于风险分层的AI模型,即使在设计上是“现成的”,在医疗环境中也不太可能“即插即用”。在实施过程早期找出关键利益相关者并定义明确的用例可以更好地促进这些模型的使用。

相似文献

1
Barriers to Implementing an Artificial Intelligence Model for Unplanned Readmissions.
ACI open. 2020 Jul;4(2):e108-e113. doi: 10.1055/s-0040-1716748.
5
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
7
Predictors of 30-Day Unplanned Readmission After Carotid Artery Stenting Using Artificial Intelligence.
Adv Ther. 2021 Jun;38(6):2954-2972. doi: 10.1007/s12325-021-01709-7. Epub 2021 Apr 9.

引用本文的文献

1
Can we predict the future of respiratory failure prediction?
Crit Care. 2025 Jun 19;29(1):253. doi: 10.1186/s13054-025-05484-7.
2
4
Impact of Artificial Intelligence-Based Technology on Nurse Management: A Systematic Review.
J Nurs Manag. 2024 Oct 12;2024:3537964. doi: 10.1155/2024/3537964. eCollection 2024.
6
Patient Perspectives on AI for Mental Health Care: Cross-Sectional Survey Study.
JMIR Ment Health. 2024 Sep 18;11:e58462. doi: 10.2196/58462.
8
A comprehensive overview of barriers and strategies for AI implementation in healthcare: Mixed-method design.
PLoS One. 2024 Aug 9;19(8):e0305949. doi: 10.1371/journal.pone.0305949. eCollection 2024.
10
Just how transformative will AI/ML be for immuno-oncology?
J Immunother Cancer. 2024 Mar 25;12(3):e007841. doi: 10.1136/jitc-2023-007841.

本文引用的文献

2
HOSPITAL Score, LACE Index and LACE+ Index as predictors of 30-day readmission in patients with heart failure.
BMJ Evid Based Med. 2020 Oct;25(5):166-167. doi: 10.1136/bmjebm-2019-111271. Epub 2019 Nov 26.
3
Artificial Intelligence and the Implementation Challenge.
J Med Internet Res. 2019 Jul 10;21(7):e13659. doi: 10.2196/13659.
4
5
Utility of the LACE Scoring System in Predicting Readmission Following Tracheotomy and Laryngectomy.
Ear Nose Throat J. 2019 Apr-May;98(4):220-222. doi: 10.1177/0145561319827908. Epub 2019 Feb 7.
6
LACE+ Index as Predictor of 30-Day Readmission in Brain Tumor Population.
World Neurosurg. 2019 Jul;127:e443-e448. doi: 10.1016/j.wneu.2019.03.169. Epub 2019 Mar 27.
7
The practical implementation of artificial intelligence technologies in medicine.
Nat Med. 2019 Jan;25(1):30-36. doi: 10.1038/s41591-018-0307-0. Epub 2019 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验