Suppr超能文献

Manta,一个整合数据库和分析平台,关联微生物组和表型数据。

MANTA, an integrative database and analysis platform that relates microbiome and phenotypic data.

机构信息

Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.

Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.

出版信息

PLoS One. 2020 Dec 4;15(12):e0243609. doi: 10.1371/journal.pone.0243609. eCollection 2020.

Abstract

With an ever-increasing interest in understanding the relationships between the microbiota and the host, more tools to map, analyze and interpret these relationships have been developed. Most of these tools, however, focus on taxonomic profiling and comparative analysis among groups, with very few analytical tools designed to correlate microbiota and the host phenotypic data. We have developed a software program for creating a web-based integrative database and analysis platform called MANTA (Microbiota And pheNoType correlation Analysis platform). In addition to storing the data, MANTA is equipped with an intuitive user interface that can be used to correlate the microbial composition with phenotypic parameters. Using a case study, we demonstrated that MANTA was able to quickly identify the significant correlations between microbial abundances and phenotypes that are supported by previous studies. Moreover, MANTA enabled the users to quick access locally stored data that can help interpret microbiota-phenotype relations. MANTA is available at https://mizuguchilab.org/manta/ for download and the source code can be found at https://github.com/chenyian-nibio/manta.

摘要

随着人们对理解微生物组与宿主之间关系的兴趣日益增加,已经开发出更多的工具来绘制、分析和解释这些关系。然而,这些工具大多集中在分类分析和组间比较分析上,只有很少的分析工具用于关联微生物组和宿主表型数据。我们开发了一个名为 MANTA(微生物组和表型相关性分析平台)的基于网络的综合数据库和分析平台的软件程序。除了存储数据外,MANTA 还配备了直观的用户界面,可用于将微生物组成与表型参数相关联。通过案例研究,我们证明了 MANTA 能够快速识别微生物丰度与表型之间的显著相关性,这些相关性得到了先前研究的支持。此外,MANTA 还使用户能够快速访问本地存储的数据,这有助于解释微生物组与表型之间的关系。MANTA 可在 https://mizuguchilab.org/manta/ 下载,其源代码可在 https://github.com/chenyian-nibio/manta 找到。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5c1/7717536/3f3e092b8dd7/pone.0243609.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验