Suppr超能文献

IA-net:用于光学相干断层扫描(OCT)图像中脉络膜新生血管分割的信息注意力卷积神经网络

IA-net: informative attention convolutional neural network for choroidal neovascularization segmentation in OCT images.

作者信息

Xi Xiaoming, Meng Xianjing, Qin Zheyun, Nie Xiushan, Yin Yilong, Chen Xinjian

机构信息

School of Computer Science and Technology, Shandong Jianzhu University, 250101, China.

School of Computer Science and Technology, Shandong University of Finance and Economics, 250014, China.

出版信息

Biomed Opt Express. 2020 Oct 7;11(11):6122-6136. doi: 10.1364/BOE.400816. eCollection 2020 Nov 1.

Abstract

Choroidal neovascularization (CNV) is a characteristic feature of wet age-related macular degeneration (AMD). Quantification of CNV is useful to clinicians in the diagnosis and treatment of CNV disease. Before quantification, CNV lesion should be delineated by automatic CNV segmentation technology. Recently, deep learning methods have achieved significant success for medical image segmentation. However, some CNVs are small objects which are hard to discriminate, resulting in performance degradation. In addition, it's difficult to train an effective network for accurate segmentation due to the complicated characteristics of CNV in OCT images. In order to tackle these two challenges, this paper proposed a novel Informative Attention Convolutional Neural Network (IA-net) for automatic CNV segmentation in OCT images. Considering that the attention mechanism has the ability to enhance the discriminative power of the interesting regions in the feature maps, the attention enhancement block is developed by introducing the additional attention constraint. It has the ability to force the model to pay high attention on CNV in the learned feature maps, improving the discriminative ability of the learned CNV features, which is useful to improve the segmentation performance on small CNV. For accurate pixel classification, the novel informative loss is proposed with the incorporation of an informative attention map. It can focus training on a set of informative samples that are difficult to be predicted. Therefore, the trained model has the ability to learn enough information to classify these informative samples, further improving the performance. The experimental results on our database demonstrate that the proposed method outperforms traditional CNV segmentation methods.

摘要

脉络膜新生血管(CNV)是湿性年龄相关性黄斑变性(AMD)的一个特征性表现。CNV的定量分析对临床医生诊断和治疗CNV疾病很有用。在进行定量分析之前,应通过自动CNV分割技术勾勒出CNV病变。近年来,深度学习方法在医学图像分割方面取得了显著成功。然而,一些CNV是难以区分的小目标,导致性能下降。此外,由于OCT图像中CNV的复杂特征,很难训练出一个有效的网络进行精确分割。为了应对这两个挑战,本文提出了一种新颖的信息注意力卷积神经网络(IA-net)用于OCT图像中的自动CNV分割。考虑到注意力机制有能力增强特征图中感兴趣区域的辨别力,通过引入额外的注意力约束开发了注意力增强模块。它能够迫使模型在学习到的特征图中高度关注CNV,提高学习到的CNV特征的辨别能力,这有助于提高对小CNV的分割性能。为了进行精确的像素分类,结合信息注意力图提出了新颖的信息损失函数。它可以将训练集中在一组难以预测的信息性样本上。因此,训练后的模型有能力学习足够的信息来对这些信息性样本进行分类,进一步提高性能。在我们的数据库上的实验结果表明,所提出的方法优于传统的CNV分割方法。

相似文献

1
IA-net: informative attention convolutional neural network for choroidal neovascularization segmentation in OCT images.
Biomed Opt Express. 2020 Oct 7;11(11):6122-6136. doi: 10.1364/BOE.400816. eCollection 2020 Nov 1.
2
MF-Net: Multi-Scale Information Fusion Network for CNV Segmentation in Retinal OCT Images.
Front Neurosci. 2021 Oct 8;15:743769. doi: 10.3389/fnins.2021.743769. eCollection 2021.
3
Feature enhancement network for CNV typing in optical coherence tomography images.
Phys Med Biol. 2022 Oct 12;67(20). doi: 10.1088/1361-6560/ac9448.
4
Graph Attention U-Net for Retinal Layer Surface Detection and Choroid Neovascularization Segmentation in OCT Images.
IEEE Trans Med Imaging. 2023 Nov;42(11):3140-3154. doi: 10.1109/TMI.2023.3240757. Epub 2023 Oct 27.
5
LamNet: A Lesion Attention Maps-Guided Network for the Prediction of Choroidal Neovascularization Volume in SD-OCT Images.
IEEE J Biomed Health Inform. 2022 Apr;26(4):1660-1671. doi: 10.1109/JBHI.2021.3129462. Epub 2022 Apr 14.
6
Automated diagnosis and segmentation of choroidal neovascularization in OCT angiography using deep learning.
Biomed Opt Express. 2020 Jan 14;11(2):927-944. doi: 10.1364/BOE.379977. eCollection 2020 Feb 1.
7
Multi-scale convolutional neural network for automated AMD classification using retinal OCT images.
Comput Biol Med. 2022 May;144:105368. doi: 10.1016/j.compbiomed.2022.105368. Epub 2022 Mar 2.

引用本文的文献

1
The role of artificial intelligence in the diagnosis of diabetic retinopathy through retinal lesion features: a narrative review.
Quant Imaging Med Surg. 2025 May 1;15(5):4816-4846. doi: 10.21037/qims-24-1791. Epub 2025 Apr 16.
2
Optical Encryption Using Attention-Inserted Physics-Driven Single-Pixel Imaging.
Sensors (Basel). 2024 Feb 4;24(3):1012. doi: 10.3390/s24031012.
3
GDCSeg-Net: general optic disc and cup segmentation network for multi-device fundus images.
Biomed Opt Express. 2021 Sep 24;12(10):6529-6544. doi: 10.1364/BOE.434841. eCollection 2021 Oct 1.
4
Multi-scale GCN-assisted two-stage network for joint segmentation of retinal layers and discs in peripapillary OCT images.
Biomed Opt Express. 2021 Mar 22;12(4):2204-2220. doi: 10.1364/BOE.417212. eCollection 2021 Apr 1.

本文引用的文献

1
Adversarial convolutional network for esophageal tissue segmentation on OCT images.
Biomed Opt Express. 2020 May 18;11(6):3095-3110. doi: 10.1364/BOE.394715. eCollection 2020 Jun 1.
2
Deep learning segmentation for optical coherence tomography measurements of the lower tear meniscus.
Biomed Opt Express. 2020 Feb 20;11(3):1539-1554. doi: 10.1364/BOE.386228. eCollection 2020 Mar 1.
3
Deep learning-based single-shot prediction of differential effects of anti-VEGF treatment in patients with diabetic macular edema.
Biomed Opt Express. 2020 Jan 28;11(2):1139-1152. doi: 10.1364/BOE.379150. eCollection 2020 Feb 1.
4
Automated diagnosis and segmentation of choroidal neovascularization in OCT angiography using deep learning.
Biomed Opt Express. 2020 Jan 14;11(2):927-944. doi: 10.1364/BOE.379977. eCollection 2020 Feb 1.
5
Deriving external forces via convolutional neural networks for biomedical image segmentation.
Biomed Opt Express. 2019 Jul 8;10(8):3800-3814. doi: 10.1364/BOE.10.003800. eCollection 2019 Aug 1.
6
Discriminative Feature Learning with Foreground Attention for Person Re-identification.
IEEE Trans Image Process. 2019 Mar 28. doi: 10.1109/TIP.2019.2908065.
7
Sparse Autoencoder for Unsupervised Nucleus Detection and Representation in Histopathology Images.
Pattern Recognit. 2019 Feb;86:188-200. doi: 10.1016/j.patcog.2018.09.007. Epub 2018 Sep 13.
8
Automatic Segmentation of Retinal Layer in OCT Images With Choroidal Neovascularization.
IEEE Trans Image Process. 2018 Dec;27(12):5880-5891. doi: 10.1109/TIP.2018.2860255. Epub 2018 Jul 26.
9
Choroid Neovascularization Growth Prediction With Treatment Based on Reaction-Diffusion Model in 3-D OCT Images.
IEEE J Biomed Health Inform. 2017 Nov;21(6):1667-1674. doi: 10.1109/JBHI.2017.2702603. Epub 2017 May 16.
10
Fully Convolutional Networks for Semantic Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验