Suppr超能文献

GDCSeg-Net:用于多设备眼底图像的通用视盘和视杯分割网络。

GDCSeg-Net: general optic disc and cup segmentation network for multi-device fundus images.

作者信息

Zhu Qianlong, Chen Xinjian, Meng Qingquan, Song Jiahuan, Luo Gaohui, Wang Meng, Shi Fei, Chen Zhongyue, Xiang Dehui, Pan Lingjiao, Li Zuoyong, Zhu Weifang

机构信息

MIPAV Lab, School of Electronics and Information Engineering, Soochow University, Jiangsu 215006, China.

State Key Laboratory of Radiation Medicine and Protection, Soochow University, Jiangsu 215006, China.

出版信息

Biomed Opt Express. 2021 Sep 24;12(10):6529-6544. doi: 10.1364/BOE.434841. eCollection 2021 Oct 1.

Abstract

Accurate segmentation of optic disc (OD) and optic cup (OC) in fundus images is crucial for the analysis of many retinal diseases, such as the screening and diagnosis of glaucoma and atrophy segmentation. Due to domain shift between different datasets caused by different acquisition devices and modes and inadequate training caused by small sample dataset, the existing deep-learning-based OD and OC segmentation networks have poor generalization ability for different fundus image datasets. In this paper, adopting the mixed training strategy based on different datasets for the first time, we propose an encoder-decoder based general OD and OC segmentation network (named as GDCSeg-Net) with the newly designed multi-scale weight-shared attention (MSA) module and densely connected depthwise separable convolution (DSC) module, to effectively overcome these two problems. Experimental results show that our proposed GDCSeg-Net is competitive with other state-of-the-art methods on five different public fundus image datasets, including REFUGE, MESSIDOR, RIM-ONE-R3, Drishti-GS and IDRiD.

摘要

眼底图像中视盘(OD)和视杯(OC)的准确分割对于许多视网膜疾病的分析至关重要,例如青光眼的筛查和诊断以及萎缩分割。由于不同采集设备和模式导致不同数据集之间存在域偏移,以及小样本数据集导致训练不足,现有的基于深度学习的OD和OC分割网络对不同眼底图像数据集的泛化能力较差。在本文中,我们首次采用基于不同数据集的混合训练策略,提出了一种基于编码器 - 解码器的通用OD和OC分割网络(命名为GDCSeg - Net),该网络具有新设计的多尺度权重共享注意力(MSA)模块和密集连接深度可分离卷积(DSC)模块,以有效克服这两个问题。实验结果表明,我们提出的GDCSeg - Net在包括REFUGE、MESSIDOR、RIM - ONE - R3、Drishti - GS和IDRiD在内的五个不同公共眼底图像数据集上与其他现有先进方法具有竞争力。

相似文献

6
Joint optic disc and optic cup segmentation based on boundary prior and adversarial learning.基于边界先验和对抗学习的联合视盘和视杯分割。
Int J Comput Assist Radiol Surg. 2021 Jun;16(6):905-914. doi: 10.1007/s11548-021-02373-6. Epub 2021 May 8.
8
Joint optic disc and cup segmentation using feature fusion and attention.基于特征融合与注意力机制的视盘和视杯联合分割
Comput Biol Med. 2022 Nov;150:106094. doi: 10.1016/j.compbiomed.2022.106094. Epub 2022 Sep 6.

本文引用的文献

3
Graph convolutional network based optic disc and cup segmentation on fundus images.基于图卷积网络的眼底图像视盘和视杯分割
Biomed Opt Express. 2020 May 13;11(6):3043-3057. doi: 10.1364/BOE.390056. eCollection 2020 Jun 1.
4
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.U-Net++:一种用于医学图像分割的嵌套U-Net架构。
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11. doi: 10.1007/978-3-030-00889-5_1. Epub 2018 Sep 20.
5
CPFNet: Context Pyramid Fusion Network for Medical Image Segmentation.CPFNet:用于医学图像分割的上下文金字塔融合网络。
IEEE Trans Med Imaging. 2020 Oct;39(10):3008-3018. doi: 10.1109/TMI.2020.2983721. Epub 2020 Mar 27.
7
Robust optic disc and cup segmentation with deep learning for glaucoma detection.利用深度学习进行青光眼检测的稳健视盘和杯分割。
Comput Med Imaging Graph. 2019 Jun;74:61-71. doi: 10.1016/j.compmedimag.2019.02.005. Epub 2019 Apr 5.
9
CE-Net: Context Encoder Network for 2D Medical Image Segmentation.CE-Net:用于二维医学图像分割的上下文编码器网络。
IEEE Trans Med Imaging. 2019 Oct;38(10):2281-2292. doi: 10.1109/TMI.2019.2903562. Epub 2019 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验