College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210093, China.
Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China.
Adv Mater. 2021 Jan;33(3):e2005024. doi: 10.1002/adma.202005024. Epub 2020 Dec 6.
While the unique physicochemical properties of nanomaterials that enable regulation of nanozyme activities are demonstrated in many systems, quantitative relationships between the nanomaterials structure and their enzymatic activities remain poorly understood, due to the heterogeneity of compositions and active sites in these nanomaterials. Here, inspired by metalloenzymes with well-defined metal-ligand coordination, a set of substituted metal-organic frameworks (MOFs) with similar coordination is employed to investigate the relationship between structure and oxidase-mimicking activity. Both experimental results and density functional theory calculations reveal a Hammett-type structure-activity linear free energy relationship (H-SALR) of MIL-53(Fe) (MIL = Materials of Institute Lavoisier) nanozymes, in which increasing the Hammett σ value with electron-withdrawing ligands increases the oxidase-mimicking activity. As a result, MIL-53(Fe) NO with the strongest electron-withdrawing NO substituent shows a tenfold higher activity than the unsubstituted MIL-53(Fe). Furthermore, the generality of H-SALR is demonstrated for a range of substrates, one other metal (Cr), and even one other MOF type (MIL-101). Such biologically inspired quantitative studies demonstrate that it is possible to identify quantitative structure-activity relationships of nanozymes, and to provide detailed insight into the catalytic mechanisms as those in native enzymes, making it possible to use these relationships to develop high-performance nanomaterials.
虽然纳米材料的独特物理化学性质使其能够调节纳米酶的活性,但由于这些纳米材料的组成和活性位点存在异质性,其纳米材料结构与其酶活性之间的定量关系仍未得到很好的理解。在这里,受具有明确金属配体配位的金属酶的启发,我们采用了一组具有相似配位的取代金属有机骨架(MOFs)来研究结构与氧化酶模拟活性之间的关系。实验结果和密度泛函理论计算都揭示了 MIL-53(Fe)(MIL = 拉瓦锡研究所材料)纳米酶的哈米特型结构-活性线性自由能关系(H-SALR),其中具有吸电子配体的哈米特 σ 值增加会增加氧化酶模拟活性。结果,具有最强吸电子 NO 取代基的 MIL-53(Fe) NO 的活性比未取代的 MIL-53(Fe) 高十倍。此外,H-SALR 的通用性还在一系列底物、另一种金属(Cr)甚至另一种 MOF 类型(MIL-101)中得到了证明。这种受生物启发的定量研究表明,有可能确定纳米酶的定量结构-活性关系,并深入了解其催化机制,就像天然酶一样,从而有可能利用这些关系来开发高性能的纳米材料。