Suppr超能文献

使用卷积神经网络进行心肺复苏期间的节律分析

Rhythm Analysis during Cardiopulmonary Resuscitation Using Convolutional Neural Networks.

作者信息

Isasi Iraia, Irusta Unai, Aramendi Elisabete, Eftestøl Trygve, Kramer-Johansen Jo, Wik Lars

机构信息

Department of Communications Engineering, University of the Basque Country UPV/EHU, 48013 Bilbao, Spain.

Department of Electrical Engineering and Computer Science, University of Stavanger, 4036 Stavanger, Norway.

出版信息

Entropy (Basel). 2020 May 27;22(6):595. doi: 10.3390/e22060595.

Abstract

Chest compressions during cardiopulmonary resuscitation (CPR) induce artifacts in the ECG that may provoque inaccurate rhythm classification by the algorithm of the defibrillator. The objective of this study was to design an algorithm to produce reliable shock/no-shock decisions during CPR using convolutional neural networks (CNN). A total of 3319 ECG segments of 9 s extracted during chest compressions were used, whereof 586 were shockable and 2733 nonshockable. Chest compression artifacts were removed using a Recursive Least Squares (RLS) filter, and the filtered ECG was fed to a CNN classifier with three convolutional blocks and two fully connected layers for the shock/no-shock classification. A 5-fold cross validation architecture was adopted to train/test the algorithm, and the proccess was repeated 100 times to statistically characterize the performance. The proposed architecture was compared to the most accurate algorithms that include handcrafted ECG features and a random forest classifier (baseline model). The median (90% confidence interval) sensitivity, specificity, accuracy and balanced accuracy of the method were 95.8% (94.6-96.8), 96.1% (95.8-96.5), 96.1% (95.7-96.4) and 96.0% (95.5-96.5), respectively. The proposed algorithm outperformed the baseline model by 0.6-points in accuracy. This new approach shows the potential of deep learning methods to provide reliable diagnosis of the cardiac rhythm without interrupting chest compression therapy.

摘要

心肺复苏术(CPR)期间的胸部按压会在心电图中产生伪迹,这可能会导致除颤器算法对心律的分类不准确。本研究的目的是设计一种算法,使用卷积神经网络(CNN)在CPR期间做出可靠的电击/非电击决策。共使用了在胸部按压期间提取的3319个9秒的心电图片段,其中586个是可电击的,2733个是不可电击的。使用递归最小二乘(RLS)滤波器去除胸部按压伪迹,并将滤波后的心电图输入到具有三个卷积块和两个全连接层的CNN分类器中进行电击/非电击分类。采用5折交叉验证架构来训练/测试该算法,并重复该过程100次以统计表征其性能。将所提出的架构与最准确的算法进行比较,这些算法包括手工制作的心电图特征和随机森林分类器(基线模型)。该方法的中位数(90%置信区间)敏感性、特异性、准确性和平衡准确性分别为95.8%(94.6-96.8)、96.1%(95.8-96.5)、96.1%(95.7-96.4)和96.0%(95.5-96.5)。所提出的算法在准确性方面比基线模型高出0.6个百分点。这种新方法显示了深度学习方法在不中断胸部按压治疗的情况下提供可靠心律诊断的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca18/7845778/f683e0fe4a20/entropy-22-00595-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验