Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
Department of Oral and Maxillofacial Radiology, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China.
Microb Cell Fact. 2020 Dec 7;19(1):223. doi: 10.1186/s12934-020-01485-z.
Genome reduction and metabolic engineering have emerged as intensive research hotspots for constructing the promising functional chassis and various microbial cell factories. Surfactin, a lipopeptide-type biosurfactant with broad spectrum antibiotic activity, has wide application prospects in anticancer therapy, biocontrol and bioremediation. Bacillus amyloliquefaciens LL3, previously isolated by our lab, contains an intact srfA operon in the genome for surfactin biosynthesis.
In this study, a genome-reduced strain GR167 lacking ~ 4.18% of the B. amyloliquefaciens LL3 genome was constructed by deleting some unnecessary genomic regions. Compared with the strain NK-1 (LL3 derivative, ΔuppΔpMC1), GR167 exhibited faster growth rate, higher transformation efficiency, increased intracellular reducing power level and higher heterologous protein expression capacity. Furthermore, the chassis strain GR167 was engineered for enhanced surfactin production. Firstly, the iturin and fengycin biosynthetic gene clusters were deleted from GR167 to generate GR167ID. Subsequently, two promoters PR and PR from LL3 were obtained by RNA-seq and promoter strength characterization, and then they were individually substituted for the native srfA promoter in GR167ID to generate GR167IDS and GR167IDT. The best mutant GR167IDS showed a 678-fold improvement in the transcriptional level of the srfA operon relative to GR167ID, and it produced 311.35 mg/L surfactin, with a 10.4-fold increase relative to GR167.
The genome-reduced strain GR167 was advantageous over the parental strain in several industrially relevant physiological traits assessed and it was highlighted as a chassis strain for further genetic modification. In future studies, further reduction of the LL3 genome can be expected to create high-performance chassis for synthetic biology applications.
基因组缩减和代谢工程已成为构建有前途的功能底盘和各种微生物细胞工厂的热门研究领域。表面活性素是一种具有广谱抗生素活性的脂肽型生物表面活性剂,在抗癌治疗、生物防治和生物修复等领域具有广泛的应用前景。本实验室先前从地衣芽孢杆菌 LL3 中分离得到的一株完整的 srfA 操纵子,用于表面活性素的生物合成。
在本研究中,通过删除一些不必要的基因组区域,构建了一个基因组缩减的菌株 GR167,其缺失了约 4.18%的地衣芽孢杆菌 LL3 基因组。与菌株 NK-1(LL3 衍生物,ΔuppΔpMC1)相比,GR167 表现出更快的生长速度、更高的转化效率、更高的细胞内还原力水平和更高的异源蛋白表达能力。此外,对底盘菌株 GR167 进行了工程改造以提高表面活性素的产量。首先,从 GR167 中删除了伊枯草素和丰原素生物合成基因簇,得到了 GR167ID。随后,通过 RNA-seq 和启动子强度表征获得了来自 LL3 的两个启动子 PR 和 PR,然后将它们分别替代 GR167ID 中的天然 srfA 启动子,得到了 GR167IDS 和 GR167IDT。最佳突变体 GR167IDS 的 srfA 操纵子转录水平相对于 GR167ID 提高了 678 倍,产生了 311.35mg/L 的表面活性素,相对于 GR167 提高了 10.4 倍。
与亲本菌株相比,基因组缩减的 GR167 在评估的几种工业相关生理特性方面具有优势,它被突出为进一步遗传修饰的底盘菌株。在未来的研究中,预计对地衣芽孢杆菌 LL3 基因组的进一步缩减可以为合成生物学应用创造高性能底盘。