Washington University Pain Center and Department of Anesthesiology, Washington University, St Louis, MO, USA.
Washington University School of Medicine, St Louis, MO, USA.
Nature. 2019 Jan;565(7739):361-365. doi: 10.1038/s41586-018-0823-6. Epub 2019 Jan 2.
The fast-growing field of bioelectronic medicine aims to develop engineered systems that can relieve clinical conditions by stimulating the peripheral nervous system. This type of technology relies largely on electrical stimulation to provide neuromodulation of organ function or pain. One example is sacral nerve stimulation to treat overactive bladder, urinary incontinence and interstitial cystitis (also known as bladder pain syndrome). Conventional, continuous stimulation protocols, however, can cause discomfort and pain, particularly when treating symptoms that can be intermittent (for example, sudden urinary urgency). Direct physical coupling of electrodes to the nerve can lead to injury and inflammation. Furthermore, typical therapeutic stimulators target large nerve bundles that innervate multiple structures, resulting in a lack of organ specificity. Here we introduce a miniaturized bio-optoelectronic implant that avoids these limitations by using (1) an optical stimulation interface that exploits microscale inorganic light-emitting diodes to activate opsins; (2) a soft, high-precision biophysical sensor system that allows continuous measurements of organ function; and (3) a control module and data analytics approach that enables coordinated, closed-loop operation of the system to eliminate pathological behaviours as they occur in real-time. In the example reported here, a soft strain gauge yields real-time information on bladder function in a rat model. Data algorithms identify pathological behaviour, and automated, closed-loop optogenetic neuromodulation of bladder sensory afferents normalizes bladder function. This all-optical scheme for neuromodulation offers chronic stability and the potential to stimulate specific cell types.
生物电子医学是一个快速发展的领域,旨在开发工程系统,通过刺激周围神经系统来缓解临床病症。这类技术主要依赖于电刺激来实现对器官功能或疼痛的神经调节。例如,骶神经刺激用于治疗膀胱过度活动症、尿失禁和间质性膀胱炎(也称膀胱疼痛综合征)。然而,传统的连续刺激方案可能会引起不适和疼痛,特别是在治疗间歇性症状时(例如,突然出现的尿急)。电极与神经的直接物理耦合可能导致损伤和炎症。此外,典型的治疗性刺激器针对的是支配多个结构的大神经束,导致缺乏器官特异性。在这里,我们介绍了一种微型化的生物光电植入物,它通过使用 (1) 利用微尺度无机发光二极管来激活光感蛋白的光刺激接口;(2) 一种柔软、高精度的生物物理传感器系统,允许对器官功能进行连续测量;以及 (3) 控制模块和数据分析方法,实现系统的协调闭环运行,实时消除病理行为。在本报告的示例中,柔软的应变计实时提供大鼠模型中膀胱功能的信息。数据算法识别病理行为,并对膀胱感觉传入神经进行自动、闭环光遗传神经调节,使膀胱功能正常化。这种用于神经调节的全光学方案提供了慢性稳定性,并有可能刺激特定的细胞类型。