Suppr超能文献

一种新工具箱,可用于区分空间记忆错误的来源。

A new toolbox to distinguish the sources of spatial memory error.

机构信息

Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.

Population Health Sciences, University of Bristol, Bristol, UK.

出版信息

J Vis. 2020 Dec 2;20(13):6. doi: 10.1167/jov.20.13.6.

Abstract

Studying the sources of errors in memory recall has proven invaluable for understanding the mechanisms of working memory (WM). While one-dimensional memory features (e.g., color, orientation) can be analyzed using existing mixture modeling toolboxes to separate the influence of imprecision, guessing, and misbinding (the tendency to confuse features that belong to different memoranda), such toolboxes are not currently available for two-dimensional spatial WM tasks. Here we present a method to isolate sources of spatial error in tasks where participants have to report the spatial location of an item in memory, using two-dimensional mixture models. The method recovers simulated parameters well and is robust to the influence of response distributions and biases, as well as number of nontargets and trials. To demonstrate the model, we fit data from a complex spatial WM task and show the recovered parameters correspond well with previous spatial WM findings and with recovered parameters on a one-dimensional analogue of this task, suggesting convergent validity for this two-dimensional modeling approach. Because the extra dimension allows greater separation of memoranda and responses, spatial tasks turn out to be much better for separating misbinding from imprecision and guessing than one-dimensional tasks. Code for these models is freely available in the MemToolbox2D package and is integrated to work with the commonly used MATLAB package MemToolbox.

摘要

研究记忆召回中的错误来源对于理解工作记忆 (WM) 的机制非常有价值。虽然一维记忆特征(例如,颜色、方向)可以使用现有的混合模型工具箱进行分析,以分离不精确、猜测和误绑定(混淆属于不同记忆的特征的倾向)的影响,但目前二维空间 WM 任务没有这样的工具箱。在这里,我们提出了一种使用二维混合模型分离参与者在记忆中报告项目空间位置任务中空间误差来源的方法。该方法很好地恢复了模拟参数,并且对响应分布和偏差的影响以及非目标和试验的数量具有鲁棒性。为了演示该模型,我们拟合了复杂空间 WM 任务的数据,并显示恢复的参数与先前的空间 WM 发现以及该任务的一维类似物上恢复的参数非常吻合,表明这种二维建模方法具有收敛效度。因为额外的维度允许更大程度地区分记忆和反应,所以空间任务比一维任务更适合于将误绑定与不精确和猜测分开。这些模型的代码在 MemToolbox2D 包中免费提供,并与常用的 MATLAB 包 MemToolbox 集成以工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/261c/7726590/eba79e2ee085/jovi-20-13-6-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验