Madani Mohammad, Lacivita Valentina, Shin Yongwoo, Tarakanova Anna
School of Mechanical, Aerospace, and Manufacturing Engineering, University of Connecticut, Storrs, CT USA.
Department of Computer Science & Engineering, University of Connecticut, Storrs, CT USA.
NPJ Comput Mater. 2025;11(1):15. doi: 10.1038/s41524-024-01472-7. Epub 2025 Jan 18.
Machine learning has advanced the rapid prediction of inorganic materials properties, yet data scarcity for specific properties and capturing thermodynamic stability remains challenging. We propose a framework utilizing a Graph Neural Network with composition-based and crystal structure-based architectures, combined with a transfer learning scheme. This approach accurately predicts energy-related properties (e.g., total energy, energy above the convex hull, energy band gap) and data-scarce mechanical properties (e.g., bulk and shear modulus). Our model incorporates four-body interactions, capturing periodicity and structural characteristics. It outperforms state-of-the-art models in 8 materials property regression tasks. Also, this model predicts local atomic environments and global structural features better than several models. Transfer learning addresses mechanical property data scarcity, while separate architecture analysis allows application to materials lacking crystal structure information. Our framework's interpretability aids in understanding elemental contributions, enhancing material design and discovery. Continuous advancements promise further performance improvements, driving efficient and accurate materials property prediction.
机器学习推动了无机材料性能的快速预测,但特定性能的数据稀缺以及捕捉热力学稳定性仍然具有挑战性。我们提出了一个框架,该框架利用具有基于成分和基于晶体结构的架构的图神经网络,并结合迁移学习方案。这种方法能够准确预测与能量相关的性能(例如,总能量、凸包上方的能量、能带隙)以及数据稀缺的力学性能(例如,体模量和剪切模量)。我们的模型纳入了四体相互作用,捕捉了周期性和结构特征。在8个材料性能回归任务中,它优于现有最先进的模型。此外,该模型在预测局部原子环境和全局结构特征方面比多个模型表现更好。迁移学习解决了力学性能数据稀缺的问题,而单独的架构分析允许应用于缺乏晶体结构信息的材料。我们框架的可解释性有助于理解元素贡献,增强材料设计和发现。持续的进步有望进一步提升性能,推动高效且准确的材料性能预测。