Schmid Sonja, Dekker Cees
Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
Nano Dynamics Lab, Biophysics Chair, Wageningen University, 6708WE Wageningen, The Netherlands.
Essays Biochem. 2021 Apr 16;65(1):93-107. doi: 10.1042/EBC20200020.
Proteins are the active workhorses in our body. These biomolecules perform all vital cellular functions from DNA replication and general biosynthesis to metabolic signaling and environmental sensing. While static 3D structures are now readily available, observing the functional cycle of proteins - involving conformational changes and interactions - remains very challenging, e.g., due to ensemble averaging. However, time-resolved information is crucial to gain a mechanistic understanding of protein function. Single-molecule techniques such as FRET and force spectroscopies provide answers but can be limited by the required labelling, a narrow time bandwidth, and more. Here, we describe electrical nanopore detection as a tool for probing protein dynamics. With a time bandwidth ranging from microseconds to hours, nanopore experiments cover an exceptionally wide range of timescales that is very relevant for protein function. First, we discuss the working principle of label-free nanopore experiments, various pore designs, instrumentation, and the characteristics of nanopore signals. In the second part, we review a few nanopore experiments that solved research questions in protein science, and we compare nanopores to other single-molecule techniques. We hope to make electrical nanopore sensing more accessible to the biochemical community, and to inspire new creative solutions to resolve a variety of protein dynamics - one molecule at a time.
蛋白质是我们身体中活跃的“主力军”。这些生物分子执行所有重要的细胞功能,从DNA复制、一般生物合成到代谢信号传导和环境感知。虽然现在很容易获得蛋白质的静态三维结构,但观察蛋白质的功能循环——包括构象变化和相互作用——仍然非常具有挑战性,例如,由于总体平均效应。然而,时间分辨信息对于深入了解蛋白质功能的机制至关重要。诸如荧光共振能量转移(FRET)和力谱学等单分子技术提供了答案,但可能会受到所需标记、狭窄的时间带宽等限制。在这里,我们将电纳米孔检测描述为一种探测蛋白质动力学的工具。纳米孔实验的时间带宽从微秒到小时不等,涵盖了与蛋白质功能高度相关的异常广泛的时间尺度。首先,我们讨论无标记纳米孔实验的工作原理、各种孔的设计、仪器设备以及纳米孔信号的特征。在第二部分中,我们回顾了一些解决蛋白质科学研究问题的纳米孔实验,并将纳米孔与其他单分子技术进行了比较。我们希望使生化界更容易接触到电纳米孔传感技术,并激发新的创造性解决方案,以便一次一个分子地解析各种蛋白质动力学。