Suppr超能文献

基于价值的决策中,奖赏敏感性取决于整体自尊。

Reward sensitivity differs depending on global self-esteem in value-based decision-making.

机构信息

Intelligent Systems and Informatics Laboratory, Mechano-Informatics Department of Graduate School of Information Science and Technology, The University of Tokyo, Eng. Bldg.2, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.

出版信息

Sci Rep. 2020 Dec 9;10(1):21525. doi: 10.1038/s41598-020-78635-1.

Abstract

Global self-esteem is a component of individual personality that impacts decision-making. Many studies have discussed the different preferences for decision-making in response to threats to a person's self-confidence, depending on global self-esteem. However, studies about global self-esteem and non-social decision-making have indicated that decisions differ due to reward sensitivity. Here, reward sensitivity refers to the extent to which rewards change decisions. We hypothesized that individuals with lower global self-esteem have lower reward sensitivity and investigated the relationship between self-esteem and reward sensitivity using a computational model. We first examined the effect of expected value and maximum value in learning under uncertainties because some studies have shown the possibility of saliency (e.g. maximum value) and relative value (e.g. expected value) affecting decisions, respectively. In our learning task, expected value affected decisions, but there was no significant effect of maximum value. Therefore, we modelled participants' choices under the condition of different expected value without considering maximum value. We used the Q-learning model, which is one of the traditional computational models in explaining experiential learning decisions. Global self-esteem correlated positively with reward sensitivity. Our results suggest that individual reward sensitivity affects decision-making depending on one's global self-esteem.

摘要

全球自尊是个体人格的一个组成部分,会影响决策。许多研究讨论了在面临个人自信心受到威胁时,不同的决策偏好取决于全球自尊。然而,关于全球自尊和非社交决策的研究表明,决策会因奖励敏感性而有所不同。这里的奖励敏感性是指奖励改变决策的程度。我们假设,全球自尊较低的个体奖励敏感性较低,并使用计算模型研究了自尊和奖励敏感性之间的关系。我们首先检验了在不确定条件下学习中期望价值和最大值的影响,因为一些研究表明,显著值(例如最大值)和相对值(例如期望价值)分别影响决策。在我们的学习任务中,期望价值影响决策,但最大值没有显著影响。因此,我们在不考虑最大值的情况下,根据不同期望价值的条件来建模参与者的选择。我们使用了 Q 学习模型,这是解释经验学习决策的传统计算模型之一。全球自尊与奖励敏感性呈正相关。我们的结果表明,个体的奖励敏感性会根据其全球自尊而影响决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b988/7725803/87651eeca679/41598_2020_78635_Fig1_HTML.jpg

相似文献

2
Cost-benefit trade-offs in decision-making and learning.决策和学习中的成本效益权衡。
PLoS Comput Biol. 2019 Sep 6;15(9):e1007326. doi: 10.1371/journal.pcbi.1007326. eCollection 2019 Sep.
5
Paranoia, self-deception and overconfidence.偏执、自欺欺人和过度自信。
PLoS Comput Biol. 2021 Oct 7;17(10):e1009453. doi: 10.1371/journal.pcbi.1009453. eCollection 2021 Oct.
8
Self-esteem and risky decision-making: an ERP study.自尊与冒险决策:一项事件相关电位研究。
Neurocase. 2010 Dec;16(6):512-9. doi: 10.1080/13554791003785893. Epub 2010 May 24.

本文引用的文献

4
Reinforcement learning in depression: A review of computational research.抑郁症的强化学习:计算研究综述。
Neurosci Biobehav Rev. 2015 Aug;55:247-67. doi: 10.1016/j.neubiorev.2015.05.005. Epub 2015 May 12.
8
Salience driven value integration explains decision biases and preference reversal.突显驱动的价值整合解释了决策偏差和偏好反转。
Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9659-64. doi: 10.1073/pnas.1119569109. Epub 2012 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验