DIADE, University of Montpellier, IRD, Montpellier, France.
CNRS-UPS-IRD, UMR5174, EDB, Université Paul Sabatier, Toulouse, France.
Methods Mol Biol. 2021;2222:107-118. doi: 10.1007/978-1-0716-0997-2_6.
Size, structure, and sequence content lability of plant mitochondrial genome (mtDNA) across species has sharply limited its use in taxonomic studies. Historically, mtDNA variation has been first investigated with RFLPs, while the development of universal primers then allowed studying sequence polymorphisms within short genomic regions (<3 kb). The recent advent of NGS technologies now offers new opportunities by greatly facilitating the assembly of longer mtDNA regions, and even full mitogenomes. Phylogenetic works aiming at comparing signals from different genomic compartments (i.e., nucleus, chloroplast, and mitochondria) have been developed on a few plant lineages, and have been shown especially relevant in groups with contrasted inheritance of organelle genomes. This chapter first reviews the main characteristics of mtDNA and the application offered in taxonomic studies. It then presents tips for best sequencing protocol based on NGS data to be routinely used in mtDNA-based phylogenetic studies.
植物线粒体基因组(mtDNA)在大小、结构和序列内容上的变异性极大地限制了其在分类学研究中的应用。历史上,mtDNA 的变异首先是通过 RFLPs 进行研究的,而通用引物的发展则允许研究短基因组区域(<3kb)内的序列多态性。最近的 NGS 技术的出现提供了新的机会,大大促进了更长 mtDNA 区域甚至完整线粒体基因组的组装。在少数植物谱系上开发了旨在比较来自不同基因组区室(即核、叶绿体和线粒体)的信号的系统发育工作,并且在具有细胞器基因组不同遗传的群体中表现出特别相关。本章首先回顾了 mtDNA 的主要特征及其在分类学研究中的应用。然后介绍了基于 NGS 数据的最佳测序方案的提示,以便在基于 mtDNA 的系统发育研究中常规使用。