Suppr超能文献

单原子催化剂提高生物传感信号放大。

Single-atom catalysts boost signal amplification for biosensing.

机构信息

Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.

出版信息

Chem Soc Rev. 2021 Jan 21;50(2):750-765. doi: 10.1039/d0cs00367k. Epub 2020 Dec 11.

Abstract

Development of highly sensitive biosensors has received ever-increasing attention over the years. Due to the unique physicochemical properties, the functional nanomaterial-enabled signal amplification strategy has made some great breakthroughs in biosensing. However, the sensitivity and selectivity still need further improvement. Single-atom catalysts (SACs) containing atomically dispersed metal active sites demonstrate distinctive advantages in catalytic activity and selectivity for various catalytic reactions. As a consequence, the SAC-enabled signal amplification strategy holds great promise in biosensors, demonstrating satisfactory sensitivity and selectivity with the assistance of tunable metal-support interactions, coordination environments and geometric/electronic structures of active sites. In this tutorial review, we briefly discuss the structural advantages of SACs. Then, the catalytic mechanism at the atomic scale and signal amplification effects of SACs in the colorimetric, electrochemical, chemiluminescence, electrochemiluminescence, and photoelectrochemical biosensing applications are highlighted in detail. Finally, opportunities and challenges to be faced in the future development of the SAC-enabled signal amplification strategy for biosensing are discussed and outlooked.

摘要

近年来,高灵敏度生物传感器的发展受到了越来越多的关注。由于独特的物理化学性质,基于功能纳米材料的信号放大策略在生物传感领域取得了一些重大突破。然而,其灵敏度和选择性仍需要进一步提高。单原子催化剂(SACs)含有原子分散的金属活性位,在各种催化反应中表现出独特的催化活性和选择性优势。因此,SAC 介导的信号放大策略在生物传感器中具有广阔的应用前景,通过可调谐的金属-载体相互作用、活性位的配位环境和几何/电子结构,可以实现令人满意的灵敏度和选择性。在本综述中,我们简要讨论了 SACs 的结构优势。然后,详细阐述了 SACs 在比色、电化学、化学发光、电致化学发光和光电化学生物传感应用中的原子尺度催化机制和信号放大效应。最后,讨论并展望了 SAC 介导的信号放大策略在生物传感未来发展中所面临的机遇和挑战。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验