The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
Small Molecule Process Chemistry, Genentech, Inc., South San Francisco, California 94080, United States.
J Am Chem Soc. 2020 Dec 30;142(52):21938-21947. doi: 10.1021/jacs.0c11480. Epub 2020 Dec 15.
A dual experimental/theoretical investigation of the Ireland-Claisen rearrangement of tetrasubstituted α-phthalimido ester enolates to afford α-tetrasubstituted, β-trisubstituted α-amino acids (generally >20:1 dr) is described. For trans allylic olefins, the - and -enol ethers proceed through chair and boat transition states, respectively. For cis allylic olefins, the trend is reversed. As a result, the diastereochemical outcome of the reaction is preserved regardless of the geometry of the enolate or the accompanying allylic olefin. We term this unique convergence of all possible olefin isomers . This reaction manifold circumvents limitations in present-day technologies for the stereoselective enolization of α,α-disubstituted allyl esters. Density functional theory paired with state-of-the-art local coupled-cluster theory (DLPNO-CCSD(T)) was employed for the accurate determination of quantum mechanical energies.
本文对四取代的α-邻苯二甲酰亚胺酯烯醇盐的爱尔兰-克莱森重排进行了双重实验/理论研究,以得到α-四取代、β-三取代的α-氨基酸(通常>20:1dr)。对于反式烯丙基烯烃,-和-烯醚分别通过椅型和船型过渡态进行反应。对于顺式烯丙基烯烃,趋势则相反。因此,反应的非对映选择性结果与烯醇盐或伴随的烯丙基烯烃的几何形状无关。我们将这种所有可能的烯烃异构体的独特收敛现象称为 。该反应途径规避了目前用于立体选择性烯醇化α,α-二取代烯丙基酯的技术的局限性。密度泛函理论与最先进的局部耦合簇理论(DLPNO-CCSD(T))相结合,用于准确确定量子力学能量。