Markov Aleksandr, Wördenweber Roger, Ichkitidze Levan, Gerasimenko Alexander, Kurilova Ulyana, Suetina Irina, Mezentseva Marina, Offenhäusser Andreas, Telyshev Dmitry
Institute for Bionic Technologies and Engineering, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
Institute of Biological Information Processing, Bioelectronics (IBI-3), Research Center Jülich, 52425 Jülich, Germany.
Nanomaterials (Basel). 2020 Dec 11;10(12):2492. doi: 10.3390/nano10122492.
The efficiency of devices for biomedical applications, including tissue engineering and neuronal stimulation, heavily depends on their biocompatibility and performance level. Therefore, it is important to find adequate materials that meet the necessary requirements such as (i) being intrinsically compatible with biological systems, (ii) providing a sufficient electronic conductivity that promotes efficient signal transduction, (iii) having "soft" mechanical properties comparable to biological structures, and (iv) being degradable in physiological solution. We have developed organic conducting biocompatible single-walled carbon nanotubes (SWCNT) composites based on bovine serum albumin, carboxymethylcellulose, and acrylic polymer and investigated their properties, which are relevant for biomedical applications. This includes ζ-potential measurements, conductivity analyses, and SEM micrographs, the latter providing a local analysis of SWCNT distribution in the base material. We observed the development of the electrical conductivity of the SWCNT composites exposed to 1 mM KCl electrolyte for 40 days, representing a high stability of the samples. The conductivity of samples reaches 1300 S/m for 0.45 wt.% nanotubes. Moreover, we demonstrated the biocompatibility of the composites via cultivating fibroblast cell culture. Finally, we showed that composite coating results in the longer lifespan of cells on the surface. Overall, the SWCNT-based conductive composites might be a promising material for extended biomedical applications.
包括组织工程和神经刺激在内的生物医学应用设备的效率,在很大程度上取决于它们的生物相容性和性能水平。因此,找到满足必要要求的合适材料很重要,这些要求包括:(i)与生物系统具有内在相容性;(ii)提供足够的电导率以促进高效的信号转导;(iii)具有与生物结构相当的“柔软”机械性能;(iv)在生理溶液中可降解。我们基于牛血清白蛋白、羧甲基纤维素和丙烯酸聚合物开发了有机导电生物相容性单壁碳纳米管(SWCNT)复合材料,并研究了它们与生物医学应用相关的性能。这包括ζ电位测量、电导率分析和扫描电子显微镜图像,后者提供了SWCNT在基材中分布的局部分析。我们观察了暴露于1 mM KCl电解质40天的SWCNT复合材料的电导率变化,这表明样品具有很高的稳定性。对于0.45 wt.%的纳米管,样品的电导率达到1300 S/m。此外,我们通过培养成纤维细胞培养物证明了复合材料的生物相容性。最后,我们表明复合涂层可延长表面细胞的寿命。总体而言,基于SWCNT的导电复合材料可能是用于扩展生物医学应用的有前途的材料。