Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA.
Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
Life Sci Alliance. 2020 Dec 16;4(2). doi: 10.26508/lsa.202000882. Print 2021 Feb.
Genetic coessentiality analysis, a computational approach which identifies genes sharing a common effect on cell fitness across large-scale screening datasets, has emerged as a powerful tool to identify functional relationships between human genes. However, widespread implementation of coessentiality to study individual genes and pathways is limited by systematic biases in existing coessentiality approaches and accessibility barriers for investigators without computational expertise. We created FIREWORKS, a method and interactive tool for the construction and statistical analysis of coessentiality networks centered around gene(s) provided by the user. FIREWORKS incorporates a novel bias reduction approach to reduce false discoveries, enables restriction of coessentiality analyses to custom subsets of cell lines, and integrates multiomic and drug-gene interaction datasets to investigate and target contextual gene essentiality. We demonstrate the broad utility of FIREWORKS through case vignettes investigating gene function and specialization, indirect therapeutic targeting of "undruggable" proteins, and context-specific rewiring of genetic networks.
遗传共效性分析是一种计算方法,可识别在大规模筛选数据集中对细胞适应性具有共同影响的基因,它已成为识别人类基因之间功能关系的强大工具。然而,由于现有共效性方法存在系统偏差,并且缺乏计算专业知识的研究人员难以使用,因此广泛采用共效性来研究单个基因和途径受到限制。我们创建了 FIREWORKS,这是一种围绕用户提供的基因构建和统计分析共效性网络的方法和交互式工具。FIREWORKS 采用了一种新的减少偏差的方法来减少假发现,能够将共效性分析限制在细胞系的自定义子集内,并集成了多组学和药物-基因相互作用数据集,以调查和靶向上下文基因的必需性。我们通过案例研究展示了 FIREWORKS 的广泛适用性,这些案例研究调查了基因功能和专业化、“不可成药”蛋白的间接治疗靶向以及遗传网络的特定于上下文的重新布线。