Suppr超能文献

基于三维深度学习的肺腺癌表皮生长因子受体突变状态自动预测。

Toward automatic prediction of EGFR mutation status in pulmonary adenocarcinoma with 3D deep learning.

机构信息

Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.

Diagnosis and Treatment Center of Small Lung Nodules, Huadong Hospital, Shanghai, China.

出版信息

Cancer Med. 2019 Jul;8(7):3532-3543. doi: 10.1002/cam4.2233. Epub 2019 May 10.

Abstract

To develop a deep learning system based on 3D convolutional neural networks (CNNs), and to automatically predict EGFR-mutant pulmonary adenocarcinoma in CT images. A dataset of 579 nodules with EGFR mutation status labels of mutant (Mut) or wild-type (WT) was retrospectively analyzed. A deep learning system, namely 3D DenseNets, was developed to process 3D patches of nodules from CT data, and learn strong representations with supervised end-to-end training. The 3D DenseNets were trained with a training subset of 348 nodules and tuned with a development subset of 116 nodules. A strong data augmentation technique, mixup, was used for better generalization. We evaluated our model on a holdout subset of 115 nodules. An independent public dataset of 37 nodules from the cancer imaging archive (TCIA) was also used to test the generalization of our method. Conventional radiomics analysis was also performed for comparison. Our method achieved promising performance on predicting EGFR mutation status, with AUCs of 75.8% and 75.0% for our holdout test set and public test set, respectively. Moreover, strong relations were found between deep learning feature and conventional radiomics, while deep learning worked through an enhanced radiomics manner, that is, deep learned radiomics (DLR), in terms of robustness, compactness and expressiveness. The proposed deep learning system predicts EGFR-mutant of lung adenocarcinomas in CT images noninvasively and automatically, indicating its potential to help clinical decision-making by identifying eligible patients of pulmonary adenocarcinoma for EGFR-targeted therapy.

摘要

为了开发一种基于三维卷积神经网络(3D CNN)的深度学习系统,并自动预测 CT 图像中的表皮生长因子受体(EGFR)突变型肺腺癌,回顾性分析了一个包含 579 个结节的数据集,这些结节具有 EGFR 突变状态的标签,包括突变型(Mut)或野生型(WT)。开发了一个名为 3D DenseNets 的深度学习系统,用于处理 CT 数据中的结节 3D 斑块,并通过有监督的端到端训练学习强表示。3D DenseNets 用 348 个结节的训练子集进行训练,用 116 个结节的开发子集进行调整。使用了一种强大的数据增强技术 mixup 来提高泛化能力。我们在 115 个结节的验证子集上评估了我们的模型。还使用了癌症成像档案(TCIA)中的 37 个结节的独立公共数据集来测试我们方法的泛化能力。还进行了常规的放射组学分析以进行比较。我们的方法在预测 EGFR 突变状态方面取得了有希望的性能,在我们的验证测试集和公共测试集上的 AUC 分别为 75.8%和 75.0%。此外,在稳健性、紧凑性和表达能力方面,发现深度学习特征与常规放射组学之间存在很强的关系,而深度学习则通过增强的放射组学方式(即深度学习放射组学(DLR))来工作。该研究提出的深度学习系统可无创、自动地预测 CT 图像中的肺腺癌 EGFR 突变型,表明其具有通过识别适合 EGFR 靶向治疗的肺腺癌患者来帮助临床决策的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a731/6601587/f58044ff7f96/CAM4-8-3532-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验