Suppr超能文献

RF-GANs:一种基于生成对抗网络的视网膜眼底图像合成方法。

RF-GANs: A Method to Synthesize Retinal Fundus Images Based on Generative Adversarial Network.

机构信息

Information and Computer Engineering College, Northeast Forestry University, Harbin, China.

出版信息

Comput Intell Neurosci. 2021 Nov 10;2021:3812865. doi: 10.1155/2021/3812865. eCollection 2021.

Abstract

Diabetic retinopathy (DR) is a diabetic complication affecting the eyes, which is the main cause of blindness in young and middle-aged people. In order to speed up the diagnosis of DR, a mass of deep learning methods have been used for the detection of this disease, but they failed to attain excellent results due to unbalanced training data, i.e., the lack of DR fundus images. To address the problem of data imbalance, this paper proposes a method dubbed retinal fundus images generative adversarial networks (RF-GANs), which is based on generative adversarial network, to synthesize retinal fundus images. RF-GANs is composed of two generation models, RF-GAN1 and RF-GAN2. Firstly, RF-GAN1 is employed to translate retinal fundus images from source domain (the domain of semantic segmentation datasets) to target domain (the domain of EyePACS dataset connected to Kaggle (EyePACS)). Then, we train the semantic segmentation models with the translated images, and employ the trained models to extract the structural and lesion masks (hereafter, we refer to it as Masks) of EyePACS. Finally, we employ RF-GAN2 to synthesize retinal fundus images using the Masks and DR grading labels. This paper verifies the effectiveness of the method: RF-GAN1 can narrow down the domain gap between different datasets to improve the performance of the segmentation models. RF-GAN2 can synthesize realistic retinal fundus images. Adopting the synthesized images for data augmentation, the accuracy and quadratic weighted kappa of the state-of-the-art DR grading model on the testing set of EyePACS increase by 1.53% and 1.70%, respectively.

摘要

糖尿病视网膜病变(DR)是一种影响眼睛的糖尿病并发症,是导致中青年人群失明的主要原因。为了加快 DR 的诊断速度,大量的深度学习方法已被用于该疾病的检测,但由于训练数据不平衡,即缺乏 DR 眼底图像,这些方法未能取得优异的结果。为了解决数据不平衡的问题,本文提出了一种基于生成对抗网络的眼底图像生成对抗网络(RF-GANs)方法,用于合成眼底图像。RF-GANs 由两个生成模型 RF-GAN1 和 RF-GAN2 组成。首先,RF-GAN1 用于将眼底图像从源域(语义分割数据集的域)转换到目标域(与 Kaggle 连接的 EyePACS 数据集(EyePACS))。然后,我们使用转换后的图像训练语义分割模型,并使用训练好的模型提取 EyePACS 的结构和病变掩模(此后,我们称之为掩模)。最后,我们使用 RF-GAN2 使用掩模和 DR 分级标签来合成眼底图像。本文验证了该方法的有效性:RF-GAN1 可以缩小不同数据集之间的域差距,从而提高分割模型的性能。RF-GAN2 可以合成逼真的眼底图像。采用合成图像进行数据增强,在 EyePACS 的测试集上,最先进的 DR 分级模型的准确性和二次加权 kappa 值分别提高了 1.53%和 1.70%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76ea/8598326/57c68ba35a8c/CIN2021-3812865.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验