Suppr超能文献

通过多项式近似将泊松广义线性模型扩展到大规模神经数据集。

Scaling the Poisson GLM to massive neural datasets through polynomial approximations.

作者信息

Zoltowski David M, Pillow Jonathan W

机构信息

Princeton Neuroscience Institute, Princeton University; Princeton, NJ 08544.

Princeton Neuroscience Institute & Psychology, Princeton University; Princeton, NJ 08544.

出版信息

Adv Neural Inf Process Syst. 2018 Dec;31:3517-3527.

Abstract

Recent advances in recording technologies have allowed neuroscientists to record simultaneous spiking activity from hundreds to thousands of neurons in multiple brain regions. Such large-scale recordings pose a major challenge to existing statistical methods for neural data analysis. Here we develop highly scalable approximate inference methods for Poisson generalized linear models (GLMs) that require only a single pass over the data. Our approach relies on a recently proposed method for obtaining approximate sufficient statistics for GLMs using polynomial approximations [7], which we adapt to the Poisson GLM setting. We focus on inference using quadratic approximations to nonlinear terms in the Poisson GLM log-likelihood with Gaussian priors, for which we derive closed-form solutions to the approximate maximum likelihood and MAP estimates, posterior distribution, and marginal likelihood. We introduce an adaptive procedure to select the polynomial approximation interval and show that the resulting method allows for efficient and accurate inference and regularization of high-dimensional parameters. We use the quadratic estimator to fit a fully-coupled Poisson GLM to spike train data recorded from 831 neurons across five regions of the mouse brain for a duration of 41 minutes, binned at 1 ms resolution. Across all neurons, this model is fit to over 2 billion spike count bins and identifies fine-timescale statistical dependencies between neurons within and across cortical and subcortical areas.

摘要

记录技术的最新进展使神经科学家能够同时记录多个脑区中数百到数千个神经元的尖峰活动。如此大规模的记录对现有的神经数据分析统计方法构成了重大挑战。在此,我们针对泊松广义线性模型(GLMs)开发了高度可扩展的近似推断方法,该方法只需要对数据进行一次遍历。我们的方法依赖于最近提出的一种使用多项式近似为GLMs获得近似充分统计量的方法[7],我们将其应用于泊松GLM设置。我们专注于使用高斯先验对泊松GLM对数似然中的非线性项进行二次近似的推断,为此我们推导出了近似最大似然和最大后验估计、后验分布以及边际似然的闭式解。我们引入了一种自适应程序来选择多项式近似区间,并表明由此产生的方法允许对高维参数进行高效且准确的推断和正则化。我们使用二次估计器将一个完全耦合的泊松GLM拟合到从小鼠大脑五个区域的831个神经元记录的尖峰序列数据上,持续时间为41分钟,以1毫秒分辨率进行分箱。在所有神经元中,该模型拟合了超过20亿个尖峰计数箱,并识别出皮质和皮质下区域内以及跨区域神经元之间的精细时间尺度统计依赖性。

相似文献

3
Bayesian inference for generalized linear models for spiking neurons.
Front Comput Neurosci. 2010 May 28;4:12. doi: 10.3389/fncom.2010.00012. eCollection 2010.
4
Nonlinear Modeling of Neural Interaction for Spike Prediction Using the Staged Point-Process Model.
Neural Comput. 2018 Dec;30(12):3189-3226. doi: 10.1162/neco_a_01137. Epub 2018 Oct 12.
5
Evaluating the double Poisson generalized linear model.
Accid Anal Prev. 2013 Oct;59:497-505. doi: 10.1016/j.aap.2013.07.017. Epub 2013 Jul 21.
6
Efficient Markov chain Monte Carlo methods for decoding neural spike trains.
Neural Comput. 2011 Jan;23(1):46-96. doi: 10.1162/NECO_a_00059. Epub 2010 Oct 21.
7
On the stability and dynamics of stochastic spiking neuron models: Nonlinear Hawkes process and point process GLMs.
PLoS Comput Biol. 2017 Feb 24;13(2):e1005390. doi: 10.1371/journal.pcbi.1005390. eCollection 2017 Feb.
8
Beyond GLMs: a generative mixture modeling approach to neural system identification.
PLoS Comput Biol. 2013;9(11):e1003356. doi: 10.1371/journal.pcbi.1003356. Epub 2013 Nov 21.
10
Characterizing the performance of the Conway-Maxwell Poisson generalized linear model.
Risk Anal. 2012 Jan;32(1):167-83. doi: 10.1111/j.1539-6924.2011.01659.x. Epub 2011 Jul 30.

引用本文的文献

1
Neuromorphic algorithms for brain implants: a review.
Front Neurosci. 2025 Apr 11;19:1570104. doi: 10.3389/fnins.2025.1570104. eCollection 2025.
3
Time-varying generalized linear models: characterizing and decoding neuronal dynamics in higher visual areas.
Front Comput Neurosci. 2024 Jan 29;18:1273053. doi: 10.3389/fncom.2024.1273053. eCollection 2024.
4
Identification of interacting neural populations: methods and statistical considerations.
J Neurophysiol. 2023 Sep 1;130(3):475-496. doi: 10.1152/jn.00131.2023. Epub 2023 Jul 19.
5
Integrating Statistical and Machine Learning Approaches for Neural Classification.
IEEE Access. 2022;10:119106-119118. doi: 10.1109/access.2022.3221436. Epub 2022 Nov 10.
6
Low-dimensional encoding of decisions in parietal cortex reflects long-term training history.
Nat Commun. 2023 Feb 23;14(1):1010. doi: 10.1038/s41467-023-36554-5.
7
Efficient spline regression for neural spiking data.
PLoS One. 2021 Oct 13;16(10):e0258321. doi: 10.1371/journal.pone.0258321. eCollection 2021.
8
Modeling statistical dependencies in multi-region spike train data.
Curr Opin Neurobiol. 2020 Dec;65:194-202. doi: 10.1016/j.conb.2020.11.005. Epub 2020 Dec 14.
9
State-space optimal feedback control of optogenetically driven neural activity.
J Neural Eng. 2021 Mar 31;18(3). doi: 10.1088/1741-2552/abb89c.
10
Probabilistic Encoding Models for Multivariate Neural Data.
Front Neural Circuits. 2019 Jan 28;13:1. doi: 10.3389/fncir.2019.00001. eCollection 2019.

本文引用的文献

1
Spontaneous behaviors drive multidimensional, brainwide activity.
Science. 2019 Apr 19;364(6437):255. doi: 10.1126/science.aav7893. Epub 2019 Apr 18.
2
High-Density, Long-Lasting, and Multi-region Electrophysiological Recordings Using Polymer Electrode Arrays.
Neuron. 2019 Jan 2;101(1):21-31.e5. doi: 10.1016/j.neuron.2018.11.002. Epub 2018 Nov 27.
3
Fully integrated silicon probes for high-density recording of neural activity.
Nature. 2017 Nov 8;551(7679):232-236. doi: 10.1038/nature24636.
4
Encoding and decoding in parietal cortex during sensorimotor decision-making.
Nat Neurosci. 2014 Oct;17(10):1395-403. doi: 10.1038/nn.3800. Epub 2014 Aug 31.
5
Fast inference in generalized linear models via expected log-likelihoods.
J Comput Neurosci. 2014 Apr;36(2):215-34. doi: 10.1007/s10827-013-0466-4. Epub 2013 Jul 6.
8
Bayesian inference for generalized linear models for spiking neurons.
Front Comput Neurosci. 2010 May 28;4:12. doi: 10.3389/fncom.2010.00012. eCollection 2010.
9
Bayesian inference of functional connectivity and network structure from spikes.
IEEE Trans Neural Syst Rehabil Eng. 2009 Jun;17(3):203-13. doi: 10.1109/TNSRE.2008.2010471. Epub 2008 Dec 9.
10
Spatio-temporal correlations and visual signalling in a complete neuronal population.
Nature. 2008 Aug 21;454(7207):995-9. doi: 10.1038/nature07140. Epub 2008 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验