Suppr超能文献

利用实证动力学识别复杂疾病表型和药物靶点的蓝图。

A Blueprint for Identifying Phenotypes and Drug Targets in Complex Disorders with Empirical Dynamics.

作者信息

Krieger Madison S, Moreau Joshua M, Zhang Haiyu, Chien May, Zehnder James L, Craig Morgan

机构信息

Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.

Department of Dermatology, University of California, San Francisco, CA, USA.

出版信息

Patterns (N Y). 2020 Nov 6;1(9):100138. doi: 10.1016/j.patter.2020.100138. eCollection 2020 Dec 11.

Abstract

A central challenge in medicine is translating from observational understanding to mechanistic understanding, where some observations are recognized as causes for the others. This can lead not only to new treatments and understanding, but also to recognition of novel phenotypes. Here, we apply a collection of mathematical techniques (), which infer mechanistic networks in a model-free manner from longitudinal data, to hematopoiesis. Our study consists of three subjects with markers for cyclic thrombocytopenia, in which multiple cells and proteins undergo abnormal oscillations. One subject has atypical markers and may represent a rare phenotype. Our analyses support this contention, and also lend new evidence to a theory for the cause of this disorder. Simulations of an intervention yield encouraging results, even when applied to patient data outside our three subjects. These successes suggest that this blueprint has broader applicability in understanding and treating complex disorders.

摘要

医学面临的一个核心挑战是从观察性理解转化为机制性理解,即识别某些观察结果是其他观察结果的原因。这不仅可以带来新的治疗方法和认识,还能发现新的表型。在这里,我们应用了一组数学技术(),该技术可从纵向数据中以无模型的方式推断机制网络,用于造血过程的研究。我们的研究包括三名患有周期性血小板减少症标志物的受试者,其中多种细胞和蛋白质出现异常振荡。一名受试者具有非典型标志物,可能代表一种罕见的表型。我们的分析支持了这一观点,也为该疾病的病因理论提供了新证据。即使将干预措施应用于我们三名受试者之外的患者数据,模拟结果也产生了令人鼓舞的效果。这些成功表明,该蓝图在理解和治疗复杂疾病方面具有更广泛的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7671/7733879/938bb3b3456b/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验