Suppr超能文献

利用拓扑数据分析评估皮肤屏障功能的皮肤图像。

Assessment of skin barrier function using skin images with topological data analysis.

机构信息

Medical Sciences Innovation Hub Program, RIKEN, Yokohama, Kanagawa, 230-0045, Japan.

Department of Dermatology, Keio University School of Medicine, Shinjuku-ku, 160-0016, Tokyo, Japan.

出版信息

NPJ Syst Biol Appl. 2020 Dec 18;6(1):40. doi: 10.1038/s41540-020-00160-8.

Abstract

Recent developments of molecular biology have revealed diverse mechanisms of skin diseases, and precision medicine considering these mechanisms requires the frequent objective evaluation of skin phenotypes. Transepidermal water loss (TEWL) is commonly used for evaluating skin barrier function; however, direct measurement of TEWL is time-consuming and is not convenient for daily clinical practice. Here, we propose a new skin barrier assessment method using skin images with topological data analysis (TDA). TDA enabled efficient identification of structural features from a skin image taken by a microscope. These features reflected the regularity of the skin texture. We found a significant correlation between the topological features and TEWL. Moreover, using the features as input, we trained machine-learning models to predict TEWL and obtained good accuracy (R = 0.524). Our results suggest that assessment of skin barrier function by topological image analysis is promising.

摘要

最近分子生物学的发展揭示了多种皮肤疾病的机制,而考虑到这些机制的精准医学则需要频繁地对皮肤表型进行客观评估。经表皮水分流失(TEWL)常用于评估皮肤屏障功能;然而,TEWL 的直接测量既耗时又不便于日常临床实践。在这里,我们提出了一种使用拓扑数据分析(TDA)的皮肤图像进行皮肤屏障评估的新方法。TDA 可从显微镜拍摄的皮肤图像中高效识别结构特征。这些特征反映了皮肤纹理的规律性。我们发现拓扑特征与 TEWL 之间存在显著相关性。此外,我们还使用这些特征作为输入,通过机器学习模型来预测 TEWL,并获得了较好的准确性(R = 0.524)。我们的研究结果表明,通过拓扑图像分析评估皮肤屏障功能具有广阔的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ef3/7749164/d255fd42df36/41540_2020_160_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验