Suppr超能文献

新的统计 RI 指数可更好地追踪意大利 COVID-19 疫情动态。

New statistical RI index allow to better track the dynamics of COVID-19 outbreak in Italy.

机构信息

Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University, Rome, Italy.

Department of Public Health and Infectious Diseases (Biostatistics Section), Sapienza University, Rome, Italy.

出版信息

Sci Rep. 2020 Dec 22;10(1):22365. doi: 10.1038/s41598-020-79039-x.

Abstract

COVID-19 pandemic in Italy displayed a spatial distribution that made the tracking of its time course quite difficult. The most relevant anomaly was the marked spatial heterogeneity of COVID-19 diffusion. Lombardia region accounted for around 60% of fatal cases (while hosting 15% of Italian population). Moreover, 86% of fatalities concentrated in four Northern Italy regions. The 'explosive' outbreak of COVID-19 in Lombardia at the very beginning of pandemic fatally biased the R-like statistics routinely used to control the disease dynamics. To (at least partially) overcome this bias, we propose a new index RI = dH/dI (daily derivative ratio of H and I, given H = Healed and I = Infected), corresponding to the ratio between healed and infected patients relative daily changes. The proposed index is less flawed than R by the uncertainty related to the estimated number of infected persons and allows to follow (and possibly forecast) epidemic dynamics in a largely model-independent way. To analyze the dynamics of the epidemic, starting from the beginning of the virus spreading-when data are insufficient to make an estimate by adopting SIR model-a "sigmoidal family with delay" logistic model was introduced. That approach allowed in estimating the epidemic peak using the few data gathered even before mid-March. Based on this analysis, the peak was correctly predicted to occur by end of April. Analytical methodology of the dynamics of the epidemic we are proposing herein aims to forecast the time and intensity of the epidemic peak (forward prediction), while allowing identifying the (more likely) beginning of the epidemic (backward prediction). In addition, we established a relationship between hospitalization in intensive care units (ICU) versus deaths daily rates by avoiding the necessity to rely on precise estimates of the infected fraction of the population The joint evolution of the above parameters over time allows for a trustworthy and unbiased estimation of the dynamics of the epidemic, allowing us to clearly detect the qualitatively different character of the 'so-called' second wave with respect to the previous epidemic peak.

摘要

意大利的 COVID-19 大流行呈现出一种空间分布,使得对其时间进程的跟踪变得非常困难。最显著的异常是 COVID-19 扩散的明显空间异质性。伦巴第大区占死亡病例的 60%左右(而该大区仅占意大利人口的 15%)。此外,86%的死亡病例集中在意大利北部的四个地区。大流行初期 COVID-19 在伦巴第大区的“爆发式”蔓延严重偏向了用于控制疾病动态的常规 R 类统计数据。为了(至少部分)克服这种偏差,我们提出了一个新的指数 RI=dH/dI(给定 H=已治愈和 I=已感染的每日衍生比率),对应于已治愈和已感染患者的相对每日变化的比率。与与估计的感染人数相关的不确定性相比,所提出的指数对 R 类统计数据的缺陷较小,并且允许以基本独立于模型的方式来跟踪(并可能预测)疫情动态。为了分析疫情的动态,从病毒传播开始时就开始分析(此时采用 SIR 模型进行估计的数据不足),引入了一个带有滞后的“Sigmoidal Family”逻辑模型。该方法允许使用甚至在三月中旬之前收集到的少量数据来估计疫情高峰期。根据该分析,正确预测疫情高峰期将在四月底出现。本文提出的疫情动态分析方法旨在预测疫情高峰期的时间和强度(向前预测),同时允许识别疫情的(更可能)开始(向后预测)。此外,我们通过避免依赖对感染人群比例的精确估计,建立了重症监护病房(ICU)住院人数与每日死亡率之间的关系。随着时间的推移,上述参数的共同演变允许对疫情动态进行可靠和无偏差的估计,使我们能够清楚地检测到相对于前一个疫情高峰期,所谓的“第二波”疫情具有不同的性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/728c/7755893/b0a9ed77b096/41598_2020_79039_Fig1a_HTML.jpg

相似文献

1
New statistical RI index allow to better track the dynamics of COVID-19 outbreak in Italy.
Sci Rep. 2020 Dec 22;10(1):22365. doi: 10.1038/s41598-020-79039-x.
2
5
[Analysis and future scenarios of the SARS-CoV-2 epidemic in Tuscany Region (Central Italy)].
Epidemiol Prev. 2020 Sep-Dec;44(5-6 Suppl 2):120-127. doi: 10.19191/EP20.5-6.S2.110.
6
A novel methodology for epidemic risk assessment of COVID-19 outbreak.
Sci Rep. 2021 Mar 5;11(1):5304. doi: 10.1038/s41598-021-82310-4.
7
First month of the epidemic caused by COVID-19 in Italy: current status and real-time outbreak development forecast.
Glob Health Res Policy. 2020 Oct 1;5:43. doi: 10.1186/s41256-020-00170-3. eCollection 2020.
8
Uncertainty quantification in epidemiological models for the COVID-19 pandemic.
Comput Biol Med. 2020 Oct;125:104011. doi: 10.1016/j.compbiomed.2020.104011. Epub 2020 Sep 25.
9
The Quixotic Task of Forecasting Peaks of COVID-19: Rather Focus on Forward and Backward Projections.
Front Public Health. 2021 Mar 16;9:623521. doi: 10.3389/fpubh.2021.623521. eCollection 2021.
10
Analysis of the Fatality Rate in Relation to Testing Capacity during the First 50 days of the COVID-19 Epidemic in Italy.
Am J Trop Med Hyg. 2020 Dec;103(6):2382-2390. doi: 10.4269/ajtmh.20-0862. Epub 2020 Oct 15.

引用本文的文献

1
Association of anti-contagion policies with the spread of COVID-19 in United States.
J Public Health Res. 2022 Mar 25;11(2):2748. doi: 10.4081/jphr.2022.2748.
3
A Framework for a Statistical Characterization of Epidemic Cycles: COVID-19 Case Study.
JMIRx Med. 2021 Mar 18;2(1):e22617. doi: 10.2196/22617. eCollection 2021 Jan-Mar.

本文引用的文献

1
COVID-19 antibody seroprevalence in Santa Clara County, California.
Int J Epidemiol. 2021 May 17;50(2):410-419. doi: 10.1093/ije/dyab010.
2
Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong.
Nat Med. 2020 Nov;26(11):1714-1719. doi: 10.1038/s41591-020-1092-0. Epub 2020 Sep 17.
3
A case study in model failure? COVID-19 daily deaths and ICU bed utilisation predictions in New York state.
Eur J Epidemiol. 2020 Aug;35(8):733-742. doi: 10.1007/s10654-020-00669-6. Epub 2020 Aug 11.
4
A guide to R - the pandemic's misunderstood metric.
Nature. 2020 Jul;583(7816):346-348. doi: 10.1038/d41586-020-02009-w.
5
Characteristics of U.S. Nursing Homes with COVID-19 Cases.
J Am Geriatr Soc. 2020 Aug;68(8):1653-1656. doi: 10.1111/jgs.16661. Epub 2020 Jul 7.
7
Emergence of genomic diversity and recurrent mutations in SARS-CoV-2.
Infect Genet Evol. 2020 Sep;83:104351. doi: 10.1016/j.meegid.2020.104351. Epub 2020 May 5.
8
Predicting turning point, duration and attack rate of COVID-19 outbreaks in major Western countries.
Chaos Solitons Fractals. 2020 Jun;135:109829. doi: 10.1016/j.chaos.2020.109829. Epub 2020 Apr 20.
9
Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China.
Nat Med. 2020 Apr;26(4):506-510. doi: 10.1038/s41591-020-0822-7. Epub 2020 Mar 19.
10
What Other Countries Can Learn From Italy During the COVID-19 Pandemic.
JAMA Intern Med. 2020 Jul 1;180(7):927-928. doi: 10.1001/jamainternmed.2020.1447.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验