U.S. National Poultry Research Center, USDA-ARS, Athens, Georgia, USA.
Department of Microbiology, Immunology and Pathology, Colorado State Universitygrid.47894.36, Fort Collins, Colorado, USA.
Appl Environ Microbiol. 2022 May 10;88(9):e0251721. doi: 10.1128/aem.02517-21. Epub 2022 Apr 13.
Fostering a "balanced" gut microbiome through the administration of beneficial microbes that can competitively exclude pathogens has gained a lot of attention and use in human and animal medicine. However, little is known about how microbes affect the horizontal gene transfer of antimicrobial resistance (AMR). To shed more light on this question, we challenged neonatal broiler chicks raised on reused broiler chicken litter-a complex environment made up of decomposing pine shavings, feces, uric acid, feathers, and feed-with Salmonella enterica serovar Heidelberg (. Heidelberg), a model pathogen. Neonatal chicks challenged with . Heidelberg and raised on reused litter were more resistant to . Heidelberg cecal colonization than chicks grown on fresh litter. Furthermore, chicks grown on reused litter were at a lower risk of colonization with . Heidelberg strains that encoded AMR on IncI1 plasmids. We used 16S rRNA gene sequencing and shotgun metagenomics to show that the major difference between chicks grown on fresh litter and those grown on reused litter was the microbiome harbored in the litter and ceca. The microbiome of reused litter samples was more uniform and enriched in functional pathways related to the biosynthesis of organic and antimicrobial molecules than that in fresh litter samples. We found that Escherichia coli was the main reservoir of plasmids encoding AMR and that the IncI1 plasmid was maintained at a significantly lower copy per cell in reused litter compared to fresh litter. These findings support the notion that commensal bacteria play an integral role in the horizontal transfer of plasmids encoding AMR to pathogens like Salmonella. Antimicrobial resistance spread is a worldwide health challenge, stemming in large part from the ability of microorganisms to share their genetic material through horizontal gene transfer. To address this issue, many countries and international organizations have adopted a One Health approach to curtail the proliferation of antimicrobial-resistant bacteria. This includes the removal and reduction of antibiotics used in food animal production and the development of alternatives to antibiotics. However, there is still a significant knowledge gap in our understanding of how resistance spreads in the absence of antibiotic selection and the role commensal bacteria play in reducing antibiotic resistance transfer. In this study, we show that commensal bacteria play a key role in reducing the horizontal gene transfer of antibiotic resistance to Salmonella, provide the identity of the bacterial species that potentially perform this function in broiler chickens, and also postulate the mechanism involved.
通过投用能够与病原体竞争的有益微生物来培育“平衡”的肠道微生物组,这种做法在人类和动物医学领域已经得到了广泛关注和应用。然而,人们对于微生物如何影响抗生素耐药性(AMR)的水平基因转移知之甚少。为了更深入地研究这个问题,我们用肠炎沙门氏菌海德堡血清型(Heidelberg)挑战了在重复使用的肉鸡垫料中饲养的新生肉鸡——这种垫料是由木屑、粪便、尿酸、羽毛和饲料组成的复杂环境。与在新鲜垫料中饲养的雏鸡相比,用 Heidelberg 挑战并在重复使用的垫料中饲养的雏鸡,其盲肠定植 Heidelberg 的能力更强。此外,在重复使用的垫料中饲养的雏鸡定植携带可移动 IncI1 质粒编码 AMR 的 Heidelberg 菌株的风险更低。我们使用 16S rRNA 基因测序和宏基因组学方法表明,在新鲜垫料中饲养的雏鸡和在重复使用垫料中饲养的雏鸡之间的主要区别是垫料和盲肠中存在的微生物组。重复使用的垫料样本中的微生物组更加均匀,且富含与有机和抗菌分子生物合成相关的功能途径。我们发现大肠杆菌是编码 AMR 的质粒的主要宿主,与新鲜垫料相比,重复使用的垫料中 IncI1 质粒的每个细胞拷贝数显著更低。这些发现支持了共生细菌在沙门氏菌等病原体的水平基因转移中发挥重要作用的观点。抗生素耐药性的传播是一个全球性的健康挑战,在很大程度上源于微生物通过水平基因转移共享其遗传物质的能力。为了解决这个问题,许多国家和国际组织已经采用了一种“同一健康”的方法来遏制抗药性细菌的扩散。这包括去除和减少在食用动物生产中使用的抗生素,并开发抗生素替代品。然而,我们对于在没有抗生素选择的情况下,耐药性是如何传播的,以及共生细菌在减少抗生素耐药性转移方面所起的作用,仍然存在很大的知识空白。在这项研究中,我们表明,共生细菌在减少沙门氏菌的抗生素耐药性的水平基因转移中发挥了关键作用,提供了在肉鸡中可能发挥这种功能的细菌物种的身份,并推测了涉及的机制。