Suppr超能文献

用于个性化治疗效果估计和治疗选择的条件生成对抗网络

Conditional Generative Adversarial Networks for Individualized Treatment Effect Estimation and Treatment Selection.

作者信息

Ge Qiyang, Huang Xuelin, Fang Shenying, Guo Shicheng, Liu Yuanyuan, Lin Wei, Xiong Momiao

机构信息

Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States.

School of Mathematical Sciences, Fudan University, Shanghai, China.

出版信息

Front Genet. 2020 Dec 11;11:585804. doi: 10.3389/fgene.2020.585804. eCollection 2020.

Abstract

Treatment response is heterogeneous. However, the classical methods treat the treatment response as homogeneous and estimate the average treatment effects. The traditional methods are difficult to apply to precision oncology. Artificial intelligence (AI) is a powerful tool for precision oncology. It can accurately estimate the individualized treatment effects and learn optimal treatment choices. Therefore, the AI approach can substantially improve progress and treatment outcomes of patients. One AI approach, conditional generative adversarial nets for inference of individualized treatment effects (GANITE) has been developed. However, GANITE can only deal with binary treatment and does not provide a tool for optimal treatment selection. To overcome these limitations, we modify conditional generative adversarial networks (MCGANs) to allow estimation of individualized effects of any types of treatments including binary, categorical and continuous treatments. We propose to use sparse techniques for selection of biomarkers that predict the best treatment for each patient. Simulations show that MCGANs outperform seven other state-of-the-art methods: linear regression (LR), Bayesian linear ridge regression (BLR), k-Nearest Neighbor (KNN), random forest classification [RF (C)], random forest regression [RF (R)], logistic regression (LogR), and support vector machine (SVM). To illustrate their applications, the proposed MCGANs were applied to 256 patients with newly diagnosed acute myeloid leukemia (AML) who were treated with high dose ara-C (HDAC), Idarubicin (IDA) and both of these two treatments (HDAC+IDA) at M. D. Anderson Cancer Center. Our results showed that MCGAN can more accurately and robustly estimate the individualized treatment effects than other state-of-the art methods. Several biomarkers such as GSK3, BILIRUBIN, SMAC are identified and a total of 30 biomarkers can explain 36.8% of treatment effect variation.

摘要

治疗反应具有异质性。然而,传统方法将治疗反应视为同质的,并估计平均治疗效果。传统方法难以应用于精准肿瘤学。人工智能(AI)是精准肿瘤学的强大工具。它可以准确估计个体治疗效果并学习最佳治疗选择。因此,人工智能方法可以显著改善患者的治疗进展和治疗结果。一种人工智能方法,即用于推断个体治疗效果的条件生成对抗网络(GANITE)已经被开发出来。然而,GANITE只能处理二元治疗,并且没有提供最佳治疗选择的工具。为了克服这些限制,我们对条件生成对抗网络(MCGANs)进行了修改,以允许估计任何类型治疗的个体效果,包括二元、分类和连续治疗。我们建议使用稀疏技术来选择预测每位患者最佳治疗的生物标志物。模拟结果表明,MCGANs优于其他七种先进方法:线性回归(LR)、贝叶斯线性岭回归(BLR)、k近邻(KNN)、随机森林分类[RF(C)]、随机森林回归[RF(R)]、逻辑回归(LogR)和支持向量机(SVM)。为了说明它们的应用,将所提出的MCGANs应用于256例新诊断的急性髓系白血病(AML)患者,这些患者在MD安德森癌症中心接受了大剂量阿糖胞苷(HDAC)、伊达比星(IDA)以及这两种治疗(HDAC + IDA)。我们的结果表明,与其他先进方法相比,MCGAN可以更准确、更稳健地估计个体治疗效果。识别出了几种生物标志物,如GSK3、胆红素、SMAC,总共30种生物标志物可以解释36.8%的治疗效果差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4010/7759680/2cee8f12f901/fgene-11-585804-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验