Suppr超能文献

从仇恨到和谐:在新冠疫情危机时期利用大语言模型实现更安全的言论。

From hate to harmony: Leveraging large language models for safer speech in times of COVID-19 crisis.

作者信息

Chao August F Y, Wang Chen-Shu, Li Bo-Yi, Chen Hong-Yan

机构信息

Department of Computer Science and Information Engineering, National Penghu University of Science and Technology, Taiwan.

Department of Information and Finance Management, National Taipei University of Technology, Taiwan.

出版信息

Heliyon. 2024 Jul 31;10(16):e35468. doi: 10.1016/j.heliyon.2024.e35468. eCollection 2024 Aug 30.

Abstract

This study investigates the rampant spread of offensive and derogatory language during the COVID-19 pandemic and aims to mitigate it through machine learning. Employing advanced Large Language Models (LLMs), the research develops a sophisticated framework adept at detecting and transforming abusive and hateful speech. The project begins by meticulously compiling a dataset, focusing specifically on Chinese language abuse and hate speech. It incorporates an extensive list of 30 pandemic-related terms, significantly enriching the resources available for this type of research. A two-tier detection model is then introduced, achieving a remarkable accuracy of 94.42 % in its first phase and an impressive 81.48 % in the second. Furthermore, the study enhances paraphrasing efficiency by integrating generative AI techniques, primarily Large Language Models, with a Latent Dirichlet Allocation (LDA) topic model. This combination allows for a thorough analysis of language before and after modification. The results highlight the transformative power of these methods. They show that the rephrased statements not only reduce the initial hostility but also preserve the essential themes and meanings. This breakthrough offers users effective rephrasing suggestions to prevent the spread of hate speech, contributing to more positive and constructive public discourse.

摘要

本研究调查了新冠疫情期间攻击性和贬损性语言的猖獗传播情况,并旨在通过机器学习减轻这种现象。该研究采用先进的大语言模型(LLMs),开发了一个复杂的框架,擅长检测和转换辱骂性及仇恨性言论。该项目首先精心编制了一个数据集,特别关注中文辱骂和仇恨言论。它纳入了一份包含30个与疫情相关术语的详尽列表,显著丰富了此类研究可用的资源。然后引入了一个双层检测模型,在第一阶段达到了94.42%的显著准确率,在第二阶段达到了81.48%的可观准确率。此外,该研究通过将生成式人工智能技术(主要是大语言模型)与潜在狄利克雷分配(LDA)主题模型相结合,提高了释义效率。这种结合使得能够对修改前后的语言进行全面分析。结果突出了这些方法的变革力量。结果表明,重新表述的语句不仅减少了最初的敌意,还保留了基本主题和含义。这一突破为用户提供了有效的重新表述建议,以防止仇恨言论的传播,有助于形成更积极和建设性的公共话语。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6f6/11365350/78ba9b147df1/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验