Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana 59717, United States.
Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.
J Am Chem Soc. 2021 Jan 13;143(1):335-348. doi: 10.1021/jacs.0c10925. Epub 2020 Dec 29.
Catalysis by canonical radical -adenosyl-l-methionine (SAM) enzymes involves electron transfer (ET) from [4Fe-4S] to SAM, generating an RS radical that undergoes regioselective homolytic reductive cleavage of the S-C5' bond to generate the 5'-dAdo· radical. However, cryogenic photoinduced S-C bond cleavage has regioselectively yielded either 5'-dAdo· or ·CH, and indeed, each of the three SAM S-C bonds can be regioselectively cleaved in an RS enzyme. This diversity highlights a longstanding central question: what controls regioselective homolytic S-C bond cleavage upon SAM reduction? We here provide an unexpected answer, founded on our observation that photoinduced S-C bond cleavage in multiple canonical RS enzymes reveals two enzyme classes: in one, photolysis forms 5'-dAdo·, and in another it forms ·CH. The identity of the cleaved S-C bond correlates with SAM ribose conformation but not with positioning and orientation of the sulfonium center relative to the [4Fe-4S] cluster. We have recognized the reduced-SAM RS radical is a () state with its antibonding unpaired electron in an orbital doublet, which renders RS Jahn-Teller (JT)-active and therefore subject to vibronically induced distortion. Active-site forces induce a JT distortion that localizes the odd electron in a single priority S-C antibond, which undergoes regioselective cleavage. In photolytic cleavage those forces act through control of the ribose conformation and are transmitted to the sulfur via the S-C5' bond, but during catalysis thermally induced conformational changes that enable ET from a cluster iron generate dominant additional forces that specifically select S-C5' for cleavage. This motion also can explain how 5'-dAdo· subsequently forms the organometallic intermediate Ω.
规范的自由基-腺苷甲硫氨酸(SAM)酶的催化涉及电子转移(ET)从[4Fe-4S]到 SAM,生成 RS 自由基,该自由基经历 S-C5'键的区域选择性均裂还原裂解,生成 5'-Ado·自由基。然而,低温光诱导的 S-C 键裂解具有区域选择性地生成 5'-Ado·或·CH,实际上,RS 酶中的三个 SAM S-C 键都可以区域选择性地裂解。这种多样性突出了一个长期存在的核心问题:在 SAM 还原时,是什么控制区域选择性的均裂 S-C 键裂解?我们在这里提供了一个意想不到的答案,这个答案是基于我们的观察,即在多个规范的 RS 酶中,光诱导的 S-C 键裂解揭示了两种酶类:在一种酶中,光解形成 5'-Ado·,而在另一种酶中,它形成·CH。裂解的 S-C 键的身份与 SAM 核糖构象相关,但与硫鎓中心相对于[4Fe-4S]簇的定位和取向无关。我们已经认识到,还原后的-SAM RS 自由基是一个()态,其反键未配对电子在一个轨道双重态中,这使 RS Jahn-Teller(JT)活性化,因此易受振动诱导的变形。活性位点力诱导 JT 变形,将奇数电子局域在单个优先 S-C 反键中,该反键发生区域选择性裂解。在光解裂解中,这些力通过控制核糖构象起作用,并通过 S-C5'键传递到硫,但在催化过程中,热诱导的构象变化使从簇铁进行 ET 成为可能,从而产生特定选择 S-C5'用于裂解的额外主要力。这种运动也可以解释 5'-Ado·随后如何形成有机金属中间体Ω。