Suppr超能文献

自由基 S-腺苷甲硫氨酸酶中 -Adenosylmethionine 的还原 S-C 键断裂的活性部位控制、Jahn-Teller 促进的区域选择性。

Active-Site Controlled, Jahn-Teller Enabled Regioselectivity in Reductive S-C Bond Cleavage of -Adenosylmethionine in Radical SAM Enzymes.

机构信息

Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana 59717, United States.

Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.

出版信息

J Am Chem Soc. 2021 Jan 13;143(1):335-348. doi: 10.1021/jacs.0c10925. Epub 2020 Dec 29.

Abstract

Catalysis by canonical radical -adenosyl-l-methionine (SAM) enzymes involves electron transfer (ET) from [4Fe-4S] to SAM, generating an RS radical that undergoes regioselective homolytic reductive cleavage of the S-C5' bond to generate the 5'-dAdo· radical. However, cryogenic photoinduced S-C bond cleavage has regioselectively yielded either 5'-dAdo· or ·CH, and indeed, each of the three SAM S-C bonds can be regioselectively cleaved in an RS enzyme. This diversity highlights a longstanding central question: what controls regioselective homolytic S-C bond cleavage upon SAM reduction? We here provide an unexpected answer, founded on our observation that photoinduced S-C bond cleavage in multiple canonical RS enzymes reveals two enzyme classes: in one, photolysis forms 5'-dAdo·, and in another it forms ·CH. The identity of the cleaved S-C bond correlates with SAM ribose conformation but not with positioning and orientation of the sulfonium center relative to the [4Fe-4S] cluster. We have recognized the reduced-SAM RS radical is a () state with its antibonding unpaired electron in an orbital doublet, which renders RS Jahn-Teller (JT)-active and therefore subject to vibronically induced distortion. Active-site forces induce a JT distortion that localizes the odd electron in a single priority S-C antibond, which undergoes regioselective cleavage. In photolytic cleavage those forces act through control of the ribose conformation and are transmitted to the sulfur via the S-C5' bond, but during catalysis thermally induced conformational changes that enable ET from a cluster iron generate dominant additional forces that specifically select S-C5' for cleavage. This motion also can explain how 5'-dAdo· subsequently forms the organometallic intermediate Ω.

摘要

规范的自由基-腺苷甲硫氨酸(SAM)酶的催化涉及电子转移(ET)从[4Fe-4S]到 SAM,生成 RS 自由基,该自由基经历 S-C5'键的区域选择性均裂还原裂解,生成 5'-Ado·自由基。然而,低温光诱导的 S-C 键裂解具有区域选择性地生成 5'-Ado·或·CH,实际上,RS 酶中的三个 SAM S-C 键都可以区域选择性地裂解。这种多样性突出了一个长期存在的核心问题:在 SAM 还原时,是什么控制区域选择性的均裂 S-C 键裂解?我们在这里提供了一个意想不到的答案,这个答案是基于我们的观察,即在多个规范的 RS 酶中,光诱导的 S-C 键裂解揭示了两种酶类:在一种酶中,光解形成 5'-Ado·,而在另一种酶中,它形成·CH。裂解的 S-C 键的身份与 SAM 核糖构象相关,但与硫鎓中心相对于[4Fe-4S]簇的定位和取向无关。我们已经认识到,还原后的-SAM RS 自由基是一个()态,其反键未配对电子在一个轨道双重态中,这使 RS Jahn-Teller(JT)活性化,因此易受振动诱导的变形。活性位点力诱导 JT 变形,将奇数电子局域在单个优先 S-C 反键中,该反键发生区域选择性裂解。在光解裂解中,这些力通过控制核糖构象起作用,并通过 S-C5'键传递到硫,但在催化过程中,热诱导的构象变化使从簇铁进行 ET 成为可能,从而产生特定选择 S-C5'用于裂解的额外主要力。这种运动也可以解释 5'-Ado·随后如何形成有机金属中间体Ω。

相似文献

2
Photoinduced Electron Transfer in a Radical SAM Enzyme Generates an -Adenosylmethionine Derived Methyl Radical.
J Am Chem Soc. 2019 Oct 9;141(40):16117-16124. doi: 10.1021/jacs.9b08541. Epub 2019 Sep 26.
4
Mechanism of Radical Initiation in the Radical SAM Enzyme Superfamily.
Annu Rev Biochem. 2023 Jun 20;92:333-349. doi: 10.1146/annurev-biochem-052621-090638. Epub 2023 Apr 4.
6
Radical SAM enzymes: Nature's choice for radical reactions.
FEBS Lett. 2023 Jan;597(1):92-101. doi: 10.1002/1873-3468.14519. Epub 2022 Oct 27.
7
Mechanism of Radical Initiation in the Radical S-Adenosyl-l-methionine Superfamily.
Acc Chem Res. 2018 Nov 20;51(11):2611-2619. doi: 10.1021/acs.accounts.8b00356. Epub 2018 Oct 15.
8
Substrate-Dependent Cleavage Site Selection by Unconventional Radical S-Adenosylmethionine Enzymes in Diphthamide Biosynthesis.
J Am Chem Soc. 2017 Apr 26;139(16):5680-5683. doi: 10.1021/jacs.7b01712. Epub 2017 Apr 13.
9
Generation of adenosyl radical from S-adenosylmethionine (SAM) in biotin synthase.
J Inorg Biochem. 2011 Jun;105(6):850-7. doi: 10.1016/j.jinorgbio.2011.03.013. Epub 2011 Mar 24.
10
Paradigm Shift for Radical S-Adenosyl-l-methionine Reactions: The Organometallic Intermediate Ω Is Central to Catalysis.
J Am Chem Soc. 2018 Jul 18;140(28):8634-8638. doi: 10.1021/jacs.8b04061. Epub 2018 Jul 6.

引用本文的文献

1
Initiation, Propagation, and Termination in the Chemistry of Radical SAM Enzymes.
Biochemistry. 2024 Dec 17;63(24):3161-3183. doi: 10.1021/acs.biochem.4c00518. Epub 2024 Dec 3.
3
Pyruvate formate-lyase activating enzyme: The catalytically active 5'-deoxyadenosyl radical caught in the act of H-atom abstraction.
Proc Natl Acad Sci U S A. 2023 Nov 21;120(47):e2314696120. doi: 10.1073/pnas.2314696120. Epub 2023 Nov 13.
4
Computational Description of Alkylated Iron-Sulfur Organometallic Clusters.
J Am Chem Soc. 2023 Jun 28;145(25):13879-13887. doi: 10.1021/jacs.3c03062. Epub 2023 Jun 12.
5
Mechanism of Radical Initiation in the Radical SAM Enzyme Superfamily.
Annu Rev Biochem. 2023 Jun 20;92:333-349. doi: 10.1146/annurev-biochem-052621-090638. Epub 2023 Apr 4.
6
Radical SAM enzymes: Nature's choice for radical reactions.
FEBS Lett. 2023 Jan;597(1):92-101. doi: 10.1002/1873-3468.14519. Epub 2022 Oct 27.
7
l-methionine Adenosylation: Radical Intermediates and the Catalytic Competence of the 5'-Deoxyadenosyl Radical.
J Am Chem Soc. 2022 Mar 23;144(11):5087-5098. doi: 10.1021/jacs.1c13706. Epub 2022 Mar 8.
10
Computational Approaches: An Underutilized Tool in the Quest to Elucidate Radical SAM Dynamics.
Molecules. 2021 Apr 29;26(9):2590. doi: 10.3390/molecules26092590.

本文引用的文献

1
-Adenosyl-l-ethionine is a Catalytically Competent Analog of -Adenosyl-l-methione (SAM) in the Radical SAM Enzyme HydG.
Angew Chem Int Ed Engl. 2021 Feb 23;60(9):4666-4672. doi: 10.1002/anie.202014337. Epub 2020 Dec 1.
2
An [FeS]-Alkyl Cluster Stabilized by an Expanded Scorpionate Ligand.
J Am Chem Soc. 2020 Aug 19;142(33):14314-14323. doi: 10.1021/jacs.0c06334. Epub 2020 Aug 6.
3
Second order Jahn-Teller interactions at unusually high molecular orbital energy separations.
Dalton Trans. 2020 Apr 28;49(16):5175-5182. doi: 10.1039/d0dt00137f.
4
Photoinduced Electron Transfer in a Radical SAM Enzyme Generates an -Adenosylmethionine Derived Methyl Radical.
J Am Chem Soc. 2019 Oct 9;141(40):16117-16124. doi: 10.1021/jacs.9b08541. Epub 2019 Sep 26.
5
Analysis of Electrochemical Properties of -Adenosyl-l-methionine and Implications for Its Role in Radical SAM Enzymes.
J Am Chem Soc. 2019 Jul 17;141(28):11019-11026. doi: 10.1021/jacs.9b00933. Epub 2019 Jul 8.
7
Mechanism of Radical Initiation in the Radical S-Adenosyl-l-methionine Superfamily.
Acc Chem Res. 2018 Nov 20;51(11):2611-2619. doi: 10.1021/acs.accounts.8b00356. Epub 2018 Oct 15.
8
Mechanistic Studies of Radical SAM Enzymes: Pyruvate Formate-Lyase Activating Enzyme and Lysine 2,3-Aminomutase Case Studies.
Methods Enzymol. 2018;606:269-318. doi: 10.1016/bs.mie.2018.04.013. Epub 2018 Jul 7.
9
Atlas of the Radical SAM Superfamily: Divergent Evolution of Function Using a "Plug and Play" Domain.
Methods Enzymol. 2018;606:1-71. doi: 10.1016/bs.mie.2018.06.004. Epub 2018 Jul 24.
10
Paradigm Shift for Radical S-Adenosyl-l-methionine Reactions: The Organometallic Intermediate Ω Is Central to Catalysis.
J Am Chem Soc. 2018 Jul 18;140(28):8634-8638. doi: 10.1021/jacs.8b04061. Epub 2018 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验