Si Mengwei, Hu Yaoqiao, Lin Zehao, Sun Xing, Charnas Adam, Zheng Dongqi, Lyu Xiao, Wang Haiyan, Cho Kyeongjae, Ye Peide D
School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States.
Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States.
Nano Lett. 2021 Jan 13;21(1):500-506. doi: 10.1021/acs.nanolett.0c03967. Epub 2020 Dec 29.
In this work, we demonstrate enhancement-mode field-effect transistors by an atomic-layer-deposited (ALD) amorphous InO channel with thickness down to 0.7 nm. Thickness is found to be critical on the materials and electron transport of InO. Controllable thickness of InO at atomic scale enables the design of sufficient 2D carrier density in the InO channel integrated with the conventional dielectric. The threshold voltage and channel carrier density are found to be considerably tuned by channel thickness. Such a phenomenon is understood by the trap neutral level (TNL) model, where the Fermi-level tends to align deeply inside the conduction band of InO and can be modulated to the bandgap in atomic layer thin InO due to the quantum confinement effect, which is confirmed by density function theory (DFT) calculation. The demonstration of enhancement-mode amorphous InO transistors suggests InO is a competitive channel material for back-end-of-line (BEOL) compatible transistors and monolithic 3D integration applications.
在这项工作中,我们展示了通过原子层沉积(ALD)的非晶InO沟道制成的增强型场效应晶体管,其厚度低至0.7nm。发现厚度对于InO的材料和电子传输至关重要。在原子尺度上对InO厚度的可控性使得能够在与传统电介质集成的InO沟道中设计出足够的二维载流子密度。发现阈值电压和沟道载流子密度会受到沟道厚度的显著调节。这种现象可以通过陷阱中性能级(TNL)模型来理解,其中费米能级倾向于在InO的导带内深处对齐,并且由于量子限制效应,在原子层厚度的InO中可以被调制到带隙,这一点已通过密度泛函理论(DFT)计算得到证实。增强型非晶InO晶体管的展示表明InO是用于后端(BEOL)兼容晶体管和单片3D集成应用的具有竞争力的沟道材料。