Põder Endel
Institute of Psychology, University of Tartu, Tartu, Estonia.
J Vis. 2020 Dec 2;20(13):19. doi: 10.1167/jov.20.13.19.
In this article, I present a framework that would accommodate the classic ideas of visual information processing together with more recent computational approaches. I used the current knowledge about visual crowding, capacity limitations, attention, and saliency to place these phenomena within a standard neural network model. I suggest some revisions to traditional mechanisms of attention and feature integration that are required to fit better into this framework. The results allow us to explain some apparent theoretical controversies in vision research, suggesting a rationale for the limited spatial extent of crowding, a role of saliency in crowding experiments, and several amendments to the feature integration theory. The scheme can be elaborated or modified by future research.
在本文中,我提出了一个框架,该框架将视觉信息处理的经典理念与更新的计算方法相结合。我利用当前关于视觉拥挤、容量限制、注意力和显著性的知识,将这些现象置于一个标准的神经网络模型中。我建议对传统的注意力和特征整合机制进行一些修订,以便更好地适应这个框架。研究结果使我们能够解释视觉研究中一些明显的理论争议,为拥挤的有限空间范围提供了一个基本原理,阐明了显著性在拥挤实验中的作用,以及对特征整合理论的一些修正。该方案可由未来的研究进行完善或修改。