Suppr超能文献

基于邻域关系增强的全卷积网络的全自动 3D 磁共振成像小腿肌肉分室分割

Fully automated 3D segmentation of MR-imaged calf muscle compartments: Neighborhood relationship enhanced fully convolutional network.

机构信息

Iowa Institute for Biomedical Imaging, University of Iowa, Iowa City, IA 52242, USA.

Iowa Institute for Biomedical Imaging, University of Iowa, Iowa City, IA 52242, USA.

出版信息

Comput Med Imaging Graph. 2021 Jan;87:101835. doi: 10.1016/j.compmedimag.2020.101835. Epub 2020 Dec 10.

Abstract

Automated segmentation of individual calf muscle compartments from 3D magnetic resonance (MR) images is essential for developing quantitative biomarkers for muscular disease progression and its prediction. Achieving clinically acceptable results is a challenging task due to large variations in muscle shape and MR appearance. In this paper, we present a novel fully convolutional network (FCN) that utilizes contextual information in a large neighborhood and embeds edge-aware constraints for individual calf muscle compartment segmentations. An encoder-decoder architecture is used to systematically enlarge convolution receptive field and preserve information at all resolutions. Edge positions derived from the FCN output muscle probability maps are explicitly regularized using kernel-based edge detection in an end-to-end optimization framework. Our method was evaluated on 40 T1-weighted MR images of 10 healthy and 30 diseased subjects by fourfold cross-validation. Mean DICE coefficients of 88.00-91.29% and mean absolute surface positioning errors of 1.04-1.66 mm were achieved for the five 3D muscle compartments.

摘要

从三维磁共振(MR)图像中自动分割个体小腿肌肉室对于开发肌肉疾病进展及其预测的定量生物标志物至关重要。由于肌肉形状和 MR 外观的巨大变化,实现临床可接受的结果是一项具有挑战性的任务。在本文中,我们提出了一种新颖的全卷积网络(FCN),该网络利用大邻域中的上下文信息,并嵌入边缘感知约束进行个体小腿肌肉室分割。使用编码器-解码器架构系统地扩大卷积感受野,并在所有分辨率下保留信息。从 FCN 输出肌肉概率图中导出的边缘位置在端到端优化框架中使用基于核的边缘检测进行显式正则化。我们的方法通过四折交叉验证在 10 名健康和 30 名患病受试者的 40 张 T1 加权 MR 图像上进行了评估。对于五个三维肌肉室,平均 DICE 系数为 88.00-91.29%,平均绝对表面定位误差为 1.04-1.66 毫米。

相似文献

10

引用本文的文献

6
10
Overview of MR Image Segmentation Strategies in Neuromuscular Disorders.神经肌肉疾病的磁共振图像分割策略概述
Front Neurol. 2021 Mar 25;12:625308. doi: 10.3389/fneur.2021.625308. eCollection 2021.

本文引用的文献

1
Boundary loss for highly unbalanced segmentation.高度不平衡分割的边界损失。
Med Image Anal. 2021 Jan;67:101851. doi: 10.1016/j.media.2020.101851. Epub 2020 Oct 6.
4
Focal Loss for Dense Object Detection.用于密集目标检测的焦散损失
IEEE Trans Pattern Anal Mach Intell. 2020 Feb;42(2):318-327. doi: 10.1109/TPAMI.2018.2858826. Epub 2018 Jul 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验