Suppr超能文献

酶催化的起源:C-H 键活化的实验发现、新模型及其与流行理论结构的相关性。

Origins of Enzyme Catalysis: Experimental Findings for C-H Activation, New Models, and Their Relevance to Prevailing Theoretical Constructs.

机构信息

Department of Chemistry, University of California , Berkeley, California 94720, United States.

Department of Molecular and Cell Biology, University of California , Berkeley, California 94720, United States.

出版信息

J Am Chem Soc. 2017 Dec 27;139(51):18409-18427. doi: 10.1021/jacs.7b08418. Epub 2017 Dec 15.

Abstract

The physical basis for enzymatic rate accelerations is a subject of great fundamental interest and of direct relevance to areas that include the de novo design of green catalysts and the pursuit of new drug regimens. Extensive investigations of C-H activating systems have provided considerable insight into the relationship between an enzyme's overall structure and the catalytic chemistry at its active site. This Perspective highlights recent experimental data for two members of distinct, yet iconic C-H activation enzyme classes, lipoxygenases and prokaryotic alcohol dehydrogenases. The data necessitate a reformulation of the dominant textbook definition of biological catalysis. A multidimensional model emerges that incorporates a range of protein motions that can be parsed into a combination of global stochastic conformational thermal fluctuations and local donor-acceptor distance sampling. These motions are needed to achieve a high degree of precision with regard to internuclear distances, geometries, and charges within the active site. The available model also suggests a physical framework for understanding the empirical enthalpic barrier in enzyme-catalyzed processes. We conclude by addressing the often conflicting interface between computational and experimental chemists, emphasizing the need for computation to predict experimental results in advance of their measurement.

摘要

酶促反应速率加速的物理基础是一个非常基础的研究课题,与许多领域都有直接的关系,包括绿色催化剂的从头设计和新药物方案的探索。对 C-H 激活系统的广泛研究为酶的整体结构与其活性位点的催化化学之间的关系提供了重要的见解。本观点重点介绍了两种不同但具有代表性的 C-H 激活酶类(脂氧合酶和原核醇脱氢酶)的两个成员的最新实验数据。这些数据需要对生物催化的主导教科书定义进行重新表述。一个多维模型应运而生,其中包含一系列蛋白质运动,可以分解为全局随机构象热波动和局部供体-受体距离采样的组合。这些运动对于实现活性位点内核间距离、几何形状和电荷的高精度是必要的。可用模型还为理解酶催化过程中的经验焓垒提供了物理框架。最后,我们讨论了计算化学家和实验化学家之间经常存在的冲突界面,强调了计算在测量前预测实验结果的必要性。

相似文献

3
Role of dynamics in enzyme catalysis: substantial versus semantic controversies.
Acc Chem Res. 2015 Feb 17;48(2):466-73. doi: 10.1021/ar500322s. Epub 2014 Dec 24.
4
A model reaction assesses contribution of H-tunneling and coupled motions to enzyme catalysis.
J Org Chem. 2012 Aug 17;77(16):6825-33. doi: 10.1021/jo300879r. Epub 2012 Aug 9.
5
Identification of a long-range protein network that modulates active site dynamics in extremophilic alcohol dehydrogenases.
J Biol Chem. 2013 May 17;288(20):14087-14097. doi: 10.1074/jbc.M113.453951. Epub 2013 Mar 22.
7
Quantum chemical study of mechanism and stereoselectivity of secondary alcohol dehydrogenase.
J Inorg Biochem. 2017 Oct;175:259-266. doi: 10.1016/j.jinorgbio.2017.07.022. Epub 2017 Jul 24.
8
Dynamically achieved active site precision in enzyme catalysis.
Acc Chem Res. 2015 Feb 17;48(2):449-56. doi: 10.1021/ar5003347. Epub 2014 Dec 24.
10
Classification and functional origins of stereocomplementary alcohol dehydrogenases for asymmetric synthesis of chiral secondary alcohols: A review.
Int J Biol Macromol. 2024 Jun;270(Pt 2):132238. doi: 10.1016/j.ijbiomac.2024.132238. Epub 2024 May 9.

引用本文的文献

2
Dynamically Interacting Protein Networks Provide a Mechanism to Overcome the Enormous Intrinsic Barrier to Orotidine 5'-Monophosphate Decarboxylation.
ACS Cent Sci. 2025 Jul 11;11(8):1377-1390. doi: 10.1021/acscentsci.5c00590. eCollection 2025 Aug 27.
3
Biochemical Consequences of a Leucine-to-Cysteine Clamp Substitution in Lipoxygenases.
Biomolecules. 2025 Aug 11;15(8):1153. doi: 10.3390/biom15081153.
4
A Foundational Shift in Models for Enzyme Function.
J Am Chem Soc. 2025 May 7;147(18):14884-14904. doi: 10.1021/jacs.5c02388. Epub 2025 Apr 25.
8
Exceptions, Paradoxes, and Their Resolutions in Chemical Reactivity.
J Org Chem. 2024 Nov 15;89(22):16307-16316. doi: 10.1021/acs.joc.4c02246. Epub 2024 Nov 6.

本文引用的文献

4
Catalytic-site design for inverse heavy-enzyme isotope effects in human purine nucleoside phosphorylase.
Proc Natl Acad Sci U S A. 2017 Jun 20;114(25):6456-6461. doi: 10.1073/pnas.1704786114. Epub 2017 Jun 5.
5
Benchmarking Quantum Mechanics/Molecular Mechanics (QM/MM) Methods on the Thymidylate Synthase-Catalyzed Hydride Transfer.
J Chem Theory Comput. 2017 Mar 14;13(3):1375-1388. doi: 10.1021/acs.jctc.6b01032. Epub 2017 Feb 22.
6
C ENDOR Spectroscopy of Lipoxygenase-Substrate Complexes Reveals the Structural Basis for C-H Activation by Tunneling.
J Am Chem Soc. 2017 Feb 8;139(5):1984-1997. doi: 10.1021/jacs.6b11856. Epub 2017 Jan 25.
7
Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase.
Nat Chem. 2017 Jan;9(1):50-56. doi: 10.1038/nchem.2596. Epub 2016 Aug 29.
8
Electric-field-stimulated protein mechanics.
Nature. 2016 Dec 15;540(7633):400-405. doi: 10.1038/nature20571. Epub 2016 Dec 7.
10
How Large Should the QM Region Be in QM/MM Calculations? The Case of Catechol O-Methyltransferase.
J Phys Chem B. 2016 Nov 10;120(44):11381-11394. doi: 10.1021/acs.jpcb.6b07814. Epub 2016 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验