Suppr超能文献

通过增强迁移学习对儿科和对比后MRI进行深度全脑分割的泛化

Generalizing Deep Whole Brain Segmentation for Pediatric and Post- Contrast MRI with Augmented Transfer Learning.

作者信息

Bermudez Camilo, Blaber Justin, Remedios Samuel W, Reynolds Jess E, Lebel Catherine, McHugo Maureen, Heckers Stephan, Huo Yuankai, Landman Bennett A

机构信息

Department of Biomedical Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN, USA 37235.

Department of Electrical Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN, USA 37235.

出版信息

Proc SPIE Int Soc Opt Eng. 2020;11313. Epub 2020 Mar 10.

Abstract

Generalizability is an important problem in deep neural networks, especially in the context of the variability of data acquisition in clinical magnetic resonance imaging (MRI). Recently, the Spatially Localized Atlas Network Tiles (SLANT) approach has been shown to effectively segment whole brain non-contrast T1w MRI with 132 volumetric labels. Enhancing generalizability of SLANT would enable broader application of volumetric assessment in multi-site studies. Transfer learning (TL) is commonly to update neural network weights for local factors; yet, it is commonly recognized to risk degradation of performance on the original validation/test cohorts. Here, we explore TL by data augmentation to address these concerns in the context of adapting SLANT to anatomical variation (e.g., adults versus children) and scanning protocol (e.g., non-contrast research T1w MRI versus contrast-enhanced clinical T1w MRI). We consider two datasets: First, 30 T1w MRI of young children with manually corrected volumetric labels, and accuracy of automated segmentation defined relative to the manually provided truth. Second, 36 paired datasets of pre- and post-contrast clinically acquired T1w MRI, and accuracy of the post-contrast segmentations assessed relative to the pre-contrast automated assessment. For both studies, we augment the original TL step of SLANT with either only the new data or with both original and new data. Over baseline SLANT, both approaches yielded significantly improved performance (pediatric: 0.89 vs. 0.82 DSC, p<0.001; contrast: 0.80 vs 0.76, p<0.001). The performance on the original test set decreased with the new-data only transfer learning approach, so data augmentation was superior to strict transfer learning.

摘要

可推广性是深度神经网络中的一个重要问题,尤其是在临床磁共振成像(MRI)数据采集存在变异性的背景下。最近,空间局部化图谱网络切片(SLANT)方法已被证明能够有效地分割具有132个体积标签的全脑非对比T1加权MRI。提高SLANT的可推广性将使体积评估在多中心研究中得到更广泛的应用。迁移学习(TL)通常用于根据局部因素更新神经网络权重;然而,人们普遍认识到这存在使原始验证/测试队列性能下降的风险。在这里,我们通过数据增强来探索迁移学习,以在使SLANT适应解剖变异(例如成人与儿童)和扫描协议(例如非对比研究T1加权MRI与对比增强临床T1加权MRI)的背景下解决这些问题。我们考虑两个数据集:第一,30例幼儿的T1加权MRI,带有手动校正的体积标签,并根据手动提供的真值定义自动分割的准确性。第二,36对临床采集的对比前和对比后T1加权MRI数据集,并根据对比前的自动评估来评估对比后分割的准确性。对于这两项研究,我们用新数据或同时用原始数据和新数据来增强SLANT的原始迁移学习步骤。与基线SLANT相比,两种方法均产生了显著提高的性能(儿科:DSC为0.89对0.82,p<0.001;对比:0.80对0.76,p<0.001)。仅采用新数据的迁移学习方法会使原始测试集的性能下降,因此数据增强优于严格的迁移学习。

相似文献

3
Deep whole brain segmentation of 7T structural MRI.7T 结构磁共振成像的全脑深度分割
Proc SPIE Int Soc Opt Eng. 2023 Feb;12464. doi: 10.1117/12.2654108. Epub 2023 Apr 3.

引用本文的文献

本文引用的文献

2
Role of deep learning in infant brain MRI analysis.深度学习在婴儿脑 MRI 分析中的作用。
Magn Reson Imaging. 2019 Dec;64:171-189. doi: 10.1016/j.mri.2019.06.009. Epub 2019 Jun 20.
3
3D whole brain segmentation using spatially localized atlas network tiles.使用空间局部化图谱网络瓦片进行 3D 全脑分割。
Neuroimage. 2019 Jul 1;194:105-119. doi: 10.1016/j.neuroimage.2019.03.041. Epub 2019 Mar 23.
5
A survey on deep learning in medical image analysis.深度学习在医学图像分析中的应用研究综述。
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
8
Multi-atlas segmentation of biomedical images: A survey.生物医学图像的多图谱分割:一项综述。
Med Image Anal. 2015 Aug;24(1):205-219. doi: 10.1016/j.media.2015.06.012. Epub 2015 Jul 6.
9
Statistical label fusion with hierarchical performance models.具有分层性能模型的统计标签融合
Proc SPIE Int Soc Opt Eng. 2014 Mar 21;9034:90341E. doi: 10.1117/12.2043182.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验