Bharatula Lakshmi Deepika, Marsili Enrico, Rice Scott A, Kwan James J
School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.
Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.
Front Microbiol. 2020 Dec 15;11:599407. doi: 10.3389/fmicb.2020.599407. eCollection 2020.
Bacterial biofilms are typically more tolerant to antimicrobials compared to bacteria in the planktonic phase and therefore require alternative treatment approaches. Mechanical biofilm disruption from ultrasound may be such an alternative by circumventing rapid biofilm adaptation to antimicrobial agents. Although ultrasound facilitates biofilm dispersal and may enhance the effectiveness of antimicrobial agents, the resulting biological response of bacteria within the biofilms remains poorly understood. To address this question, we investigated the microstructural effects of biofilms exposed to high intensity focused ultrasound (HIFU) at different acoustic pressures and the subsequent biological response. Confocal microscopy images indicated a clear microstructural response at peak negative pressures equal to or greater than 3.5 MPa. In this pressure amplitude range, HIFU partially reduced the biomass of cells and eroded exopolysaccharides from the biofilm. These pressures also elicited a biological response; we observed an increase in a biomarker for biofilm development (cyclic-di-GMP) proportional to ultrasound induced biofilm removal. Cyclic-di-GMP overproducing mutant strains were also more resilient to disruption from HIFU at these pressures. The biological response was further evidenced by an increase in the relative abundance of cyclic-di-GMP overproducing variants present in the biofilm after exposure to HIFU. Our results, therefore, suggest that both physical and biological effects of ultrasound on bacterial biofilms must be considered in future studies.
与浮游状态的细菌相比,细菌生物膜通常对抗菌剂具有更强的耐受性,因此需要采用替代治疗方法。超声引起的机械性生物膜破坏可能是一种替代方法,因为它可以避免生物膜对抗菌剂的快速适应性。尽管超声有助于生物膜的分散,并可能增强抗菌剂的效果,但生物膜内细菌产生的生物学反应仍知之甚少。为了解决这个问题,我们研究了在不同声压下暴露于高强度聚焦超声(HIFU)的生物膜的微观结构效应以及随后的生物学反应。共聚焦显微镜图像显示,在峰值负压等于或大于3.5MPa时,生物膜有明显的微观结构反应。在此压力幅度范围内,HIFU部分减少了细胞生物量,并侵蚀了生物膜中的胞外多糖。这些压力也引发了生物学反应;我们观察到生物膜发育的一种生物标志物(环二鸟苷酸)的增加与超声诱导的生物膜去除成正比。在这些压力下,环二鸟苷酸过量产生的突变菌株对HIFU破坏也更具抵抗力。暴露于HIFU后,生物膜中环二鸟苷酸过量产生变体的相对丰度增加,进一步证明了这种生物学反应。因此,我们的结果表明,在未来的研究中必须考虑超声对细菌生物膜的物理和生物学效应。