Solis-Vasquez Leonardo, Tillack Andreas F, Santos-Martins Diogo, Koch Andreas, LeGrand Scott, Forli Stefano
Embedded Systems and Applications Group. Technical University of Darmstadt, Darmstadt, Germany.
Hochschulstr. 10, D-64289, Darmstadt, Germany.
Parallel Comput. 2022 Mar;109. doi: 10.1016/j.parco.2021.102861. Epub 2021 Nov 11.
Irregular applications can be found in different scientific fields. In computer-aided drug design, molecular docking simulations play an important role in finding promising drug candidates. AutoDock is a software application widely used for predicting molecular interactions at close distances. It is characterized by irregular computations and long execution runtimes. In recent years, a hardware-accelerated version of AutoDock, called AutoDock-GPU, has been under active development. This work benchmarks the recent code and algorithmic enhancements incorporated into AutoDock-GPU. Particularly, we analyze the impact on execution runtime of techniques based on early termination. These enable AutoDock-GPU to explore the molecular space as necessary, while safely avoiding redundant computations. Our results indicate that it is possible to achieve average runtime reductions of 50% by using these techniques. Furthermore, a comprehensive literature review is also provided, where our work is compared to relevant approaches leveraging hardware acceleration for molecular docking.
不规则应用存在于不同的科学领域。在计算机辅助药物设计中,分子对接模拟在寻找有前景的候选药物方面发挥着重要作用。AutoDock是一款广泛用于预测近距离分子相互作用的软件应用程序。它的特点是计算不规则且执行运行时间长。近年来,一种名为AutoDock-GPU的硬件加速版AutoDock正在积极开发中。这项工作对最近纳入AutoDock-GPU的代码和算法增强进行了基准测试。特别是,我们分析了基于提前终止的技术对执行运行时间的影响。这些技术使AutoDock-GPU能够根据需要探索分子空间,同时安全地避免冗余计算。我们的结果表明,使用这些技术有可能将平均运行时间减少50%。此外,还提供了一篇全面的文献综述,将我们的工作与利用硬件加速进行分子对接的相关方法进行了比较。