Suppr超能文献

在AutoDock-GPU分子对接中对不规则计算性能进行基准测试。

Benchmarking the Performance of Irregular Computations in AutoDock-GPU Molecular Docking.

作者信息

Solis-Vasquez Leonardo, Tillack Andreas F, Santos-Martins Diogo, Koch Andreas, LeGrand Scott, Forli Stefano

机构信息

Embedded Systems and Applications Group. Technical University of Darmstadt, Darmstadt, Germany.

Hochschulstr. 10, D-64289, Darmstadt, Germany.

出版信息

Parallel Comput. 2022 Mar;109. doi: 10.1016/j.parco.2021.102861. Epub 2021 Nov 11.

Abstract

Irregular applications can be found in different scientific fields. In computer-aided drug design, molecular docking simulations play an important role in finding promising drug candidates. AutoDock is a software application widely used for predicting molecular interactions at close distances. It is characterized by irregular computations and long execution runtimes. In recent years, a hardware-accelerated version of AutoDock, called AutoDock-GPU, has been under active development. This work benchmarks the recent code and algorithmic enhancements incorporated into AutoDock-GPU. Particularly, we analyze the impact on execution runtime of techniques based on early termination. These enable AutoDock-GPU to explore the molecular space as necessary, while safely avoiding redundant computations. Our results indicate that it is possible to achieve average runtime reductions of 50% by using these techniques. Furthermore, a comprehensive literature review is also provided, where our work is compared to relevant approaches leveraging hardware acceleration for molecular docking.

摘要

不规则应用存在于不同的科学领域。在计算机辅助药物设计中,分子对接模拟在寻找有前景的候选药物方面发挥着重要作用。AutoDock是一款广泛用于预测近距离分子相互作用的软件应用程序。它的特点是计算不规则且执行运行时间长。近年来,一种名为AutoDock-GPU的硬件加速版AutoDock正在积极开发中。这项工作对最近纳入AutoDock-GPU的代码和算法增强进行了基准测试。特别是,我们分析了基于提前终止的技术对执行运行时间的影响。这些技术使AutoDock-GPU能够根据需要探索分子空间,同时安全地避免冗余计算。我们的结果表明,使用这些技术有可能将平均运行时间减少50%。此外,还提供了一篇全面的文献综述,将我们的工作与利用硬件加速进行分子对接的相关方法进行了比较。

相似文献

2
Accelerating AutoDock Vina with GPUs.使用 GPU 加速 AutoDock Vina。
Molecules. 2022 May 9;27(9):3041. doi: 10.3390/molecules27093041.
6
Accelerating AutoDock4 with GPUs and Gradient-Based Local Search.使用 GPU 和基于梯度的局部搜索来加速 AutoDock4。
J Chem Theory Comput. 2021 Feb 9;17(2):1060-1073. doi: 10.1021/acs.jctc.0c01006. Epub 2021 Jan 6.
8
GPU-Accelerated Flexible Molecular Docking.GPU加速的灵活分子对接
J Phys Chem B. 2021 Feb 4;125(4):1049-1060. doi: 10.1021/acs.jpcb.0c09051. Epub 2021 Jan 26.
9
Uni-Dock: GPU-Accelerated Docking Enables Ultralarge Virtual Screening.Uni-Dock:GPU 加速对接实现超大规模虚拟筛选。
J Chem Theory Comput. 2023 Jun 13;19(11):3336-3345. doi: 10.1021/acs.jctc.2c01145. Epub 2023 Apr 26.

引用本文的文献

本文引用的文献

2
Accelerating AutoDock4 with GPUs and Gradient-Based Local Search.使用 GPU 和基于梯度的局部搜索来加速 AutoDock4。
J Chem Theory Comput. 2021 Feb 9;17(2):1060-1073. doi: 10.1021/acs.jctc.0c01006. Epub 2021 Jan 6.
5
Parallelization of Molecular Docking: A Review.分子对接的并行化:综述。
Curr Top Med Chem. 2018;18(12):1015-1028. doi: 10.2174/1568026618666180821145215.
7
Software for molecular docking: a review.分子对接软件综述
Biophys Rev. 2017 Apr;9(2):91-102. doi: 10.1007/s12551-016-0247-1. Epub 2017 Jan 16.
8
Protein Binding Pocket Dynamics.蛋白质结合口袋动力学。
Acc Chem Res. 2016 May 17;49(5):809-15. doi: 10.1021/acs.accounts.5b00516. Epub 2016 Apr 25.
10
High performance virtual drug screening on many-core processors.在多核处理器上进行高性能虚拟药物筛选。
Int J High Perform Comput Appl. 2015 May;29(2):119-134. doi: 10.1177/1094342014528252.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验