Am J Epidemiol. 2021 Jun 1;190(6):1148-1158. doi: 10.1093/aje/kwaa287.
Previous research has demonstrated the usefulness of hierarchical modeling for incorporating a flexible array of prior information in genetic association studies. When this prior information consists of estimates from association analyses of single-nucleotide polymorphisms (SNP)-intermediate or SNP-gene expression, a hierarchical model is equivalent to a 2-stage instrumental or transcriptome-wide association study (TWAS) analysis, respectively. We propose to extend our previous approach for the joint analysis of marginal summary statistics to incorporate prior information via a hierarchical model (hJAM). In this framework, the use of appropriate estimates as prior information yields an analysis similar to Mendelian randomization (MR) and TWAS approaches. hJAM is applicable to multiple correlated SNPs and intermediates to yield conditional estimates for the intermediates on the outcome, thus providing advantages over alternative approaches. We investigated the performance of hJAM in comparison with existing MR and TWAS approaches and demonstrated that hJAM yields an unbiased estimate, maintains correct type-I error, and has increased power across extensive simulations. We applied hJAM to 2 examples: estimating the causal effects of body mass index (GIANT Consortium) and type 2 diabetes (DIAGRAM data set, GERA Cohort, and UK Biobank) on myocardial infarction (UK Biobank) and estimating the causal effects of the expressions of the genes for nuclear casein kinase and cyclin dependent kinase substrate 1 and peptidase M20 domain containing 1 on the risk of prostate cancer (PRACTICAL and GTEx).
先前的研究已经证明了分层建模在将灵活的多种先验信息纳入遗传关联研究中的有用性。当这种先验信息由单核苷酸多态性(SNP)-中间物或 SNP-基因表达关联分析的估计值组成时,分层模型分别相当于两阶段工具或全转录组关联研究(TWAS)分析。我们建议扩展我们之前用于联合分析边缘汇总统计数据的方法,通过分层模型(hJAM)纳入先验信息。在这个框架中,使用适当的估计值作为先验信息会产生类似于孟德尔随机化(MR)和 TWAS 方法的分析。hJAM 适用于多个相关的 SNP 和中间物,以产生中间物对结局的条件估计,从而提供优于替代方法的优势。我们研究了 hJAM 与现有的 MR 和 TWAS 方法相比的性能,并证明 hJAM 产生了无偏估计,保持了正确的 I 型错误率,并在广泛的模拟中提高了功效。我们将 hJAM 应用于 2 个示例:估计体重指数(GIANT 联盟)和 2 型糖尿病(DIAGRAM 数据集、GERA 队列和英国生物库)对心肌梗死(英国生物库)的因果效应,以及估计核酪蛋白激酶和细胞周期依赖性激酶底物 1 和肽酶 M20 结构域包含 1 的基因表达对前列腺癌风险的因果效应(PRACTICAL 和 GTEx)。