Suppr超能文献

一种用于急性放射损伤后追踪肺血管通透性的快速体内近红外荧光成像分析方法。

A rapid dynamic in vivo near-infrared fluorescence imaging assay to track lung vascular permeability after acute radiation injury.

机构信息

Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin.

Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2021 Mar 1;320(3):L436-L450. doi: 10.1152/ajplung.00066.2020. Epub 2021 Jan 6.

Abstract

To develop a dynamic in vivo near-infrared (NIR) fluorescence imaging assay to quantify sequential changes in lung vascular permeability-surface area product (PS) in rodents. Dynamic NIR imaging methods for determining lung vascular permeability-surface area product were developed and tested on non-irradiated and 13 Gy irradiated rats with/without treatment with lisinopril, a radiation mitigator. A physiologically-based pharmacokinetic (PBPK) model of indocyanine green (ICG) pulmonary disposition was applied to in vivo imaging data and PS was estimated. In vivo results were validated by five accepted assays: ex vivo perfused lung imaging, endothelial filtration coefficient (K) measurement, pulmonary vascular resistance measurement, Evan's blue dye uptake, and histopathology. A PBPK model-derived measure of lung vascular permeability-surface area product increased from 2.60 ± 0.40 [CL: 2.42-2.78] mL/min in the non-irradiated group to 6.94 ± 8.25 [CL: 3.56-10.31] mL/min in 13 Gy group after 42 days. Lisinopril treatment lowered PS in the 13 Gy group to 4.76 ± 6.17 [CL: 2.12-7.40] mL/min. A much higher up to 5× change in PS values was observed in rats exhibiting severe radiation injury. Ex vivo K (mL/min/cm HO/g dry lung weight), a measure of pulmonary vascular permeability, showed similar trends in lungs of irradiated rats (0.164 ± 0.081 [CL: 0.11-0.22]) as compared to non-irradiated controls (0.022 ± 0.003 [CL: 0.019-0.025]), with reduction to 0.070 ± 0.035 [CL: 0.045-0.096] for irradiated rats treated with lisinopril. Similar trends were observed for ex vivo pulmonary vascular resistance, Evan's blue uptake, and histopathology. Our results suggest that whole body dynamic NIR fluorescence imaging can replace current assays, which are all terminal. The imaging accurately tracks changes in PS and changes in lung interstitial transport in vivo in response to radiation injury.

摘要

为了开发一种用于定量研究啮齿动物肺部血管通透性表面积产物(PS)的动态活体近红外(NIR)荧光成像分析方法。开发了用于确定肺部血管通透性表面积产物的动态 NIR 成像方法,并在未接受辐射和接受 13Gy 辐射的大鼠以及接受雷米普利(一种辐射缓解剂)治疗的大鼠中进行了测试。应用基于生理学的药代动力学(PBPK)模型对吲哚菁绿(ICG)肺分布的体内成像数据进行了分析,并估计了 PS。体内结果通过五种公认的方法进行了验证:离体灌注肺成像、内皮滤过系数(K)测量、肺血管阻力测量、伊文思蓝染料摄取和组织病理学。PBPK 模型衍生的 PS 增加了 42 天后从非照射组的 2.60±0.40[CL:2.42-2.78]mL/min 增加到 13Gy 组的 6.94±8.25[CL:3.56-10.31]mL/min。雷米普利治疗将 13Gy 组的 PS 降低至 4.76±6.17[CL:2.12-7.40]mL/min。在表现出严重辐射损伤的大鼠中,PS 值的变化高达 5 倍。离体 K(mL/min/cm HO/g 干肺重),一种肺血管通透性的测量方法,在照射大鼠的肺部显示出与非照射对照相似的趋势(0.164±0.081[CL:0.11-0.22]),而接受雷米普利治疗的照射大鼠则降低至 0.070±0.035[CL:0.045-0.096]。离体肺血管阻力、伊文思蓝摄取和组织病理学也显示出相似的趋势。我们的结果表明,全身动态 NIR 荧光成像可以替代所有终末方法。该成像方法可以准确地跟踪 PS 的变化和辐射损伤后体内肺间质转运的变化。

相似文献

1
A rapid dynamic in vivo near-infrared fluorescence imaging assay to track lung vascular permeability after acute radiation injury.
Am J Physiol Lung Cell Mol Physiol. 2021 Mar 1;320(3):L436-L450. doi: 10.1152/ajplung.00066.2020. Epub 2021 Jan 6.
2
2 Window NIR Imaging of Radiation Injury Mitigation Provided by Reduced Notch-Dll4 Expression on Vasculature.
Mol Imaging Biol. 2024 Feb;26(1):124-137. doi: 10.1007/s11307-023-01840-7. Epub 2023 Aug 2.
4
Use of steroids to suppress vascular response to radiation.
Int J Radiat Oncol Biol Phys. 1987 Apr;13(4):563-7. doi: 10.1016/0360-3016(87)90072-1.
6
Differential time scale of fluid and solute permeability following hypothermic lung preservation.
J Heart Lung Transplant. 2000 Feb;19(2):179-84. doi: 10.1016/s1053-2498(99)00131-x.
8
Targeted Near-Infrared Fluorescence Imaging of Atherosclerosis: Clinical and Intracoronary Evaluation of Indocyanine Green.
JACC Cardiovasc Imaging. 2016 Sep;9(9):1087-1095. doi: 10.1016/j.jcmg.2016.01.034. Epub 2016 Aug 17.
9
Permeability characteristics of isolated perfused rat lungs.
J Appl Physiol (1985). 1991 Apr;70(4):1854-60. doi: 10.1152/jappl.1991.70.4.1854.
10
Radiation Increases Bioavailability of Lisinopril, a Mitigator of Radiation-Induced Toxicities.
Front Pharmacol. 2021 Apr 27;12:646076. doi: 10.3389/fphar.2021.646076. eCollection 2021.

引用本文的文献

1
2
Advances in noninvasive imaging for detecting radiation-induced lung injury (RILI).
Int J Radiat Biol. 2025 Jul 15:1-13. doi: 10.1080/09553002.2025.2531903.
3
Dynamic multispectral NIR/SWIR for lymphovascular architectural and functional quantification.
J Biomed Opt. 2024 Oct;29(10):106001. doi: 10.1117/1.JBO.29.10.106001. Epub 2024 Sep 26.
4
First magnetic particle imaging to assess pulmonary vascular leakage in vivo in the acutely injured and fibrotic lung.
Bioeng Transl Med. 2023 Nov 29;9(2):e10626. doi: 10.1002/btm2.10626. eCollection 2024 Mar.
5
Advanced technique of myocardial no-reflow quantification using indocyanine green.
Biomed Opt Express. 2024 Jan 17;15(2):818-833. doi: 10.1364/BOE.511912. eCollection 2024 Feb 1.
6
2 Window NIR Imaging of Radiation Injury Mitigation Provided by Reduced Notch-Dll4 Expression on Vasculature.
Mol Imaging Biol. 2024 Feb;26(1):124-137. doi: 10.1007/s11307-023-01840-7. Epub 2023 Aug 2.
7
Biomarkers to Predict Lethal Radiation Injury to the Rat Lung.
Int J Mol Sci. 2023 Mar 15;24(6):5627. doi: 10.3390/ijms24065627.
8
Organ-Specific Endothelial Dysfunction Following Total Body Irradiation Exposure.
Toxics. 2022 Dec 1;10(12):747. doi: 10.3390/toxics10120747.
9
Sterically Shielded Hydrophilic Analogs of Indocyanine Green.
J Org Chem. 2022 Sep 2;87(17):11593-11601. doi: 10.1021/acs.joc.2c01229. Epub 2022 Aug 11.

本文引用的文献

1
Radiation Dose-Dependent Changes in Lymphatic Remodeling.
Int J Radiat Oncol Biol Phys. 2019 Nov 15;105(4):852-860. doi: 10.1016/j.ijrobp.2019.07.054. Epub 2019 Aug 5.
2
An efficient method for measuring plasma volume using indocyanine green dye.
MethodsX. 2019 May 8;6:1072-1083. doi: 10.1016/j.mex.2019.05.003. eCollection 2019.
3
Burn Depth Analysis Using Indocyanine Green Fluorescence: A Review.
J Burn Care Res. 2019 Jun 21;40(4):513-516. doi: 10.1093/jbcr/irz054.
4
Mapping genetic modifiers of radiation-induced cardiotoxicity to rat chromosome 3.
Am J Physiol Heart Circ Physiol. 2019 Jun 1;316(6):H1267-H1280. doi: 10.1152/ajpheart.00482.2018. Epub 2019 Mar 8.
5
Pathological effects of ionizing radiation: endothelial activation and dysfunction.
Cell Mol Life Sci. 2019 Feb;76(4):699-728. doi: 10.1007/s00018-018-2956-z. Epub 2018 Oct 30.
6
Comprehensive Assessment of Indocyanine Green Usage: One Tracer, Multiple Urological Applications.
Eur Urol Focus. 2018 Sep;4(5):665-668. doi: 10.1016/j.euf.2018.08.017. Epub 2018 Sep 7.
7
Methods for detecting host genetic modifiers of tumor vascular function using dynamic near-infrared fluorescence imaging.
Biomed Opt Express. 2018 Jan 9;9(2):543-556. doi: 10.1364/BOE.9.000543. eCollection 2018 Feb 1.
8
Occurrence of pneumonitis following radiotherapy of breast cancer - A prospective study.
Strahlenther Onkol. 2018 Jun;194(6):520-532. doi: 10.1007/s00066-017-1257-z. Epub 2018 Feb 15.
9
Acute and Chronic Kidney Injury in a Non-Human Primate Model of Partial-Body Irradiation with Bone Marrow Sparing.
Radiat Res. 2017 Dec;188(6):661-671. doi: 10.1667/RR24857.1. Epub 2017 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验