Suppr超能文献

比较通过切片软件获得的六种商用3D打印机针对临床相关解剖模型的成本和打印时间估计。

Comparing cost and print time estimates for six commercially-available 3D printers obtained through slicing software for clinically relevant anatomical models.

作者信息

Chen Joshua V, Dang Alan B C, Dang Alexis

机构信息

Department of Orthopaedic Surgery, University of California, San Francisco, USA.

CA Department of Surgery, San Francisco VA Health Center, Orthopaedic Section, San Francisco, USA.

出版信息

3D Print Med. 2021 Jan 6;7(1):1. doi: 10.1186/s41205-020-00091-4.

Abstract

BACKGROUND

3D printed patient-specific anatomical models have been applied clinically to orthopaedic care for surgical planning and patient education. The estimated cost and print time per model for 3D printers have not yet been compared with clinically representative models across multiple printing technologies. This study investigates six commercially-available 3D printers: Prusa i3 MK3S, Formlabs Form 2, Formlabs Form 3, LulzBot TAZ 6, Stratasys F370, and Stratasys J750 Digital Anatomy.

METHODS

Seven representative orthopaedic standard tessellation models derived from CT scans were imported into the respective slicing software for each 3D printer. For each printer and corresponding print setting, the slicing software provides a print time and material use estimate. Material quantity was used to calculate estimated model cost. Print settings investigated were infill percentage, layer height, and model orientation on the print bed. The slicing software investigated are Cura LulzBot Edition 3.6.20, GrabCAD Print 1.43, PreForm 3.4.6, and PrusaSlicer 2.2.0.

RESULTS

The effect of changing infill between 15% and 20% on estimated print time and material use was negligible. Orientation of the model has considerable impact on time and cost with worst-case differences being as much as 39.30% added print time and 34.56% added costs. Averaged across all investigated settings, horizontal model orientation on the print bed minimizes estimated print time for all 3D printers, while vertical model orientation minimizes cost with the exception of Stratasys J750 Digital Anatomy, in which horizontal orientation also minimized cost. Decreasing layer height for all investigated printers increased estimated print time and decreased estimated cost with the exception of Stratasys F370, in which cost increased. The difference in material cost was two orders of magnitude between the least and most-expensive printers. The difference in build rate (cm/min) was one order of magnitude between the fastest and slowest printers.

CONCLUSIONS

All investigated 3D printers in this study have the potential for clinical utility. Print time and print cost are dependent on orientation of anatomy and the printers and settings selected. Cost-effective clinical 3D printing of anatomic models should consider an appropriate printer for the complexity of the anatomy and the experience of the printer technicians.

摘要

背景

3D打印的患者特异性解剖模型已在临床上应用于骨科护理,用于手术规划和患者教育。尚未将3D打印机每个模型的估计成本和打印时间与多种打印技术的临床代表性模型进行比较。本研究调查了六种商用3D打印机:普拉斯i3 MK3S、Formlabs Form 2、Formlabs Form 3、LulzBot TAZ 6、Stratasys F370和Stratasys J750数字解剖打印机。

方法

将从CT扫描中获得的七个代表性骨科标准细分模型导入到每台3D打印机各自的切片软件中。对于每台打印机和相应的打印设置,切片软件会提供打印时间和材料使用估计值。使用材料数量来计算估计的模型成本。研究的打印设置包括填充百分比、层高和打印床上的模型方向。研究的切片软件有Cura LulzBot版3.6.20、GrabCAD Print 1.43、PreForm 3.4.6和PrusaSlicer 2.2.0。

结果

将填充率在15%至20%之间变化对估计打印时间和材料使用的影响可忽略不计。模型方向对时间和成本有相当大的影响,最坏情况下打印时间增加多达39.30%,成本增加34.56%。在所有研究设置中取平均值,打印床上水平放置模型可使所有3D打印机的估计打印时间最短,而垂直放置模型可使成本最低,但Stratasys J750数字解剖打印机除外,在该打印机中水平放置也可使成本最低。除Stratasys F370成本增加外,降低所有研究打印机的层高会增加估计打印时间并降低估计成本。最便宜和最昂贵的打印机之间材料成本相差两个数量级。最快和最慢的打印机之间构建速度(厘米/分钟)相差一个数量级。

结论

本研究中所有调查的3D打印机都有临床应用潜力。打印时间和打印成本取决于解剖结构的方向以及所选的打印机和设置。具有成本效益的解剖模型临床3D打印应根据解剖结构的复杂性和打印机技术人员的经验选择合适的打印机。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38f9/7786927/bd41ad22127b/41205_2020_91_Fig1_HTML.jpg

相似文献

3
A comparison of trueness and precision of 12 3D printers used in dentistry.
BDJ Open. 2022 May 26;8(1):14. doi: 10.1038/s41405-022-00108-6.
4
Effect of print layer height and printer type on the accuracy of 3-dimensional printed orthodontic models.
Am J Orthod Dentofacial Orthop. 2017 Oct;152(4):557-565. doi: 10.1016/j.ajodo.2017.06.012.
5
Accuracy of commercial 3D printers for the fabrication of surgical guides in dental implantology.
J Dent. 2022 Feb;117:103909. doi: 10.1016/j.jdent.2021.103909. Epub 2021 Nov 28.
9
Do low-cost 3-dimensional printers produce suitable dental models?
Am J Orthod Dentofacial Orthop. 2022 Jun;161(6):858-865. doi: 10.1016/j.ajodo.2021.06.018.
10
3D Printing for veterinary anatomy: An overview.
Anat Histol Embryol. 2019 Nov;48(6):609-620. doi: 10.1111/ahe.12502.

引用本文的文献

3
Effect of infill ratios in SLA 3D printing on mechanical properties of castable wax patterns for molded shells in investment casting.
PLoS One. 2025 Feb 20;20(2):e0311245. doi: 10.1371/journal.pone.0311245. eCollection 2025.
4
Three-dimensional printed models as an effective tool for the management of complex congenital heart disease.
Front Bioeng Biotechnol. 2024 Aug 2;12:1369514. doi: 10.3389/fbioe.2024.1369514. eCollection 2024.
5
Toward Synthetic Physical Fingerprint Targets.
Sensors (Basel). 2024 Apr 29;24(9):2847. doi: 10.3390/s24092847.
6
Advanced Preoperative Planning Techniques in the Management of Complex Proximal Humerus Fractures.
Cureus. 2024 Jan 2;16(1):e51551. doi: 10.7759/cureus.51551. eCollection 2024 Jan.
7
Advanced Strategies for the Fabrication of Multi-Material Anatomical Models of Complex Pediatric Oncologic Cases.
Bioengineering (Basel). 2023 Dec 27;11(1):31. doi: 10.3390/bioengineering11010031.
10
A quick guide on implementing and quality assuring 3D printing in radiation oncology.
J Appl Clin Med Phys. 2023 Nov;24(11):e14102. doi: 10.1002/acm2.14102. Epub 2023 Jul 27.

本文引用的文献

1
3D Printing of Face Shields During COVID-19 Pandemic: A Technical Note.
J Oral Maxillofac Surg. 2020 Aug;78(8):1275-1278. doi: 10.1016/j.joms.2020.04.040. Epub 2020 May 1.
3
Helmet Modification to PPE With 3D Printing During the COVID-19 Pandemic at Duke University Medical Center: A Novel Technique.
J Arthroplasty. 2020 Jul;35(7S):S23-S27. doi: 10.1016/j.arth.2020.04.035. Epub 2020 Apr 18.
4
COVID-19 and the role of 3D printing in medicine.
3D Print Med. 2020 Apr 27;6(1):11. doi: 10.1186/s41205-020-00064-7.
5
3D Printed Face Shields: A Community Response to the COVID-19 Global Pandemic.
Acad Radiol. 2020 Jun;27(6):905-906. doi: 10.1016/j.acra.2020.04.020. Epub 2020 Apr 17.
6
Applications of 3D Printing Technology to Address COVID-19-Related Supply Shortages.
Am J Med. 2020 Jul;133(7):771-773. doi: 10.1016/j.amjmed.2020.04.002. Epub 2020 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验