Suppr超能文献

基于自编码器和 SVM 分类器的心电图信号心律失常自动检测。

Automatic detection of arrhythmias from an ECG signal using an auto-encoder and SVM classifier.

机构信息

Madhav Institute of Technology and Science, Gwalior, Madhya Pradesh, India.

Indian Institute of Information Technology, Pune, Maharashtra, India.

出版信息

Phys Eng Sci Med. 2022 Jun;45(2):665-674. doi: 10.1007/s13246-022-01119-1. Epub 2022 Mar 18.

Abstract

Millions of people around the world are affected by arrhythmias, which are abnormal activities of the functioning of the heart. Most arrhythmias are harmful to the heart and can suddenly become life-threatening. The electrocardiogram (ECG) is an important non-invasive tool in cardiology for the diagnosis of arrhythmias. This work proposes a computer-aided diagnosis (CAD) system to automatically classify different types of arrhythmias from ECG signals. First, the auto-encoder convolutional network (ACN) model is used, which is based on a one-dimensional convolutional neural network (1D-CNN) that automatically learns the best features from the raw ECG signals. After that, the support vector machine (SVM) classifier is applied to the features learned by the ACN model to improve the detection of arrhythmic beats. This classifier detects four different types of arrhythmias, namely the left bundle branch block (LBBB), right bundle branch block (RBBB), paced beat (PB), and premature ventricular contractions (PVC), along with the normal sinus rhythms (NSR). Among these arrhythmias, PVC is particularly a dangerous type of heartbeat in ECG signals. The performance of the model is measured in terms of accuracy, sensitivity, and precision using a tenfold cross-validation strategy on the MIT-BIH arrhythmia database. The obtained overall accuracy of the SVM classifier was 98.84%. The result of this model is portrayed as a better performance than in other literary works. Thus, this approach may also help in further clinical studies of cardiac cases.

摘要

全世界有数以百万计的人受到心律失常的影响,心律失常是心脏功能异常活动。大多数心律失常对心脏有害,并可能突然危及生命。心电图 (ECG) 是心脏病学中用于诊断心律失常的重要非侵入性工具。这项工作提出了一种计算机辅助诊断 (CAD) 系统,可自动从 ECG 信号中分类不同类型的心律失常。首先,使用自动编码器卷积网络 (ACN) 模型,该模型基于一维卷积神经网络 (1D-CNN),可自动从原始 ECG 信号中学习最佳特征。之后,将支持向量机 (SVM) 分类器应用于 ACN 模型学习到的特征,以提高心律失常节拍的检测能力。这个分类器可以检测四种不同类型的心律失常,分别是左束支传导阻滞 (LBBB)、右束支传导阻滞 (RBBB)、起搏节拍 (PB) 和室性期前收缩 (PVC),以及正常窦性节律 (NSR)。在这些心律失常中,PVC 是 ECG 信号中特别危险的一种心跳类型。通过在 MIT-BIH 心律失常数据库上使用十折交叉验证策略,以准确性、灵敏度和精度来衡量模型的性能。SVM 分类器的整体准确性为 98.84%。该模型的结果被描绘为比其他文献中的表现更好。因此,这种方法也可能有助于进一步研究心脏病例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验