Suppr超能文献

因子与网络负荷的等效性。

On the equivalency of factor and network loadings.

机构信息

University of North Carolina at Greensboro, Greensboro, NC, 27402, USA.

University of Virginia, Charlottesville, VA, USA.

出版信息

Behav Res Methods. 2021 Aug;53(4):1563-1580. doi: 10.3758/s13428-020-01500-6. Epub 2021 Jan 6.

Abstract

Recent research has demonstrated that the network measure node strength or sum of a node's connections is roughly equivalent to confirmatory factor analysis (CFA) loadings. A key finding of this research is that node strength represents a combination of different latent causes. In the present research, we sought to circumvent this issue by formulating a network equivalent of factor loadings, which we call network loadings. In two simulations, we evaluated whether these network loadings could effectively (1) separate the effects of multiple latent causes and (2) estimate the simulated factor loading matrix of factor models. Our findings suggest that the network loadings can effectively do both. In addition, we leveraged the second simulation to derive effect size guidelines for network loadings. In a third simulation, we evaluated the similarities and differences between factor and network loadings when the data were generated from random, factor, and network models. We found sufficient differences between the loadings, which allowed us to develop an algorithm to predict the data generating model called the Loadings Comparison Test (LCT). The LCT had high sensitivity and specificity when predicting the data generating model. In sum, our results suggest that network loadings can provide similar information to factor loadings when the data are generated from a factor model and therefore can be used in a similar way (e.g., item selection, measurement invariance, factor scores).

摘要

最近的研究表明,网络度量节点强度或节点连接的总和大致相当于验证性因素分析 (CFA) 的负荷。这项研究的一个关键发现是,节点强度代表了不同潜在原因的组合。在本研究中,我们试图通过制定网络负荷的网络等效物来规避这个问题,我们称之为网络负荷。在两项模拟中,我们评估了这些网络负荷是否可以有效地 (1) 分离多个潜在原因的影响,以及 (2) 估计因子模型的模拟因子负荷矩阵。我们的研究结果表明,网络负荷可以有效地做到这两点。此外,我们利用第二项模拟为网络负荷得出了效应量指南。在第三个模拟中,我们评估了当数据来自随机、因子和网络模型时,因子和网络负荷之间的相似性和差异。我们发现负荷之间存在足够的差异,这使我们能够开发一种称为负荷比较测试 (LCT) 的算法来预测数据生成模型。LCT 在预测数据生成模型时具有高灵敏度和特异性。总之,我们的研究结果表明,当数据来自因子模型时,网络负荷可以提供与因子负荷相似的信息,因此可以以类似的方式使用 (例如,项目选择、测量不变性、因子分数)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验