Suppr超能文献

智能手机应用程序(2kmFIT-App)测量心肺功能:有效性和可靠性研究。

Smartphone App (2kmFIT-App) for Measuring Cardiorespiratory Fitness: Validity and Reliability Study.

机构信息

Department of Physical Education and Sports, Faculty of Education, University of Balearic Islands, Palma, Spain.

PROmoting FITness and Health Through Physical Activity Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain.

出版信息

JMIR Mhealth Uhealth. 2021 Jan 8;9(1):e14864. doi: 10.2196/14864.

Abstract

BACKGROUND

There is strong evidence suggesting that higher levels of cardiorespiratory fitness (CRF) are associated with a healthier metabolic profile, and that CRF can serve as a powerful predictor of morbidity and mortality. In this context, a smartphone app based on the 2-km walk test (UKK test) would provide the possibility to assess CRF remotely in individuals geographically distributed around a country or continent, and even between continents, with minimal equipment and low costs.

OBJECTIVE

The overall aim of this study was to evaluate the validity and reliability of 2kmFIT-App developed for Android and iOS mobile operating systems to estimate maximum oxygen consumption (VO2max) as an indicator of CRF. The specific aims of the study were to determine the validity of 2kmFIT-App to track distance and calculate heart rate (HR).

METHODS

Twenty participants were included for field-testing validation and reliability analysis. The participants completed the UKK test twice using 2kmFIT-App. Distance and HR were measured with the app as well as with accurate methods, and VO2max was estimated using the UKK test equation.

RESULTS

The validity results showed the following mean differences (app minus criterion): distance (-70.40, SD 51.47 meters), time (-0.59, SD 0.45 minutes), HR (-16.75, SD 9.96 beats/minute), and VO2max (3.59, SD 2.01 ml/kg/min). There was moderate validity found for HR (intraclass correlation coefficient [ICC] 0.731, 95% CI -0.211 to 0.942) and good validity found for VO2max (ICC 0.878, 95% CI -0.125 to 0.972). The reliability results showed the following mean differences (retest minus test): app distance (25.99, SD 43.21 meters), app time (-0.15, SD 0.94 seconds), pace (-0.18, SD 0.33 min/km), app HR (-4.5, 13.44 beats/minute), and app VO2max (0.92, SD 3.04 ml/kg/min). There was good reliability for app HR (ICC 0.897, 95% CI 0.742-0.959) and excellent validity for app VO2max (ICC 0.932, 95% CI 0.830-0.973). All of these findings were observed when using the app with an Android operating system, whereas validity was poor when the app was used with iOS.

CONCLUSIONS

This study shows that 2kmFIT-App is a new, scientifically valid and reliable tool able to objectively and remotely estimate CRF, HR, and distance with an Android but not iOS mobile operating system. However, certain limitations such as the time required by 2kmFIT-App to calculate HR or the temperature environment should be considered when using the app.

摘要

背景

有强有力的证据表明,更高水平的心肺适能(CRF)与更健康的代谢特征相关,并且 CRF 可以作为发病率和死亡率的有力预测指标。在这种情况下,基于 2 公里步行测试(UUK 测试)的智能手机应用程序将有可能在地理上分布在一个国家或大陆甚至在各大洲之间的个体中远程评估 CRF,所需设备最少,成本最低。

目的

本研究的总体目标是评估专为 Android 和 iOS 移动操作系统开发的 2kmFIT-App 评估最大摄氧量(VO2max)作为 CRF 指标的有效性和可靠性。研究的具体目的是确定 2kmFIT-App 跟踪距离和计算心率(HR)的有效性。

方法

共有 20 名参与者参与现场测试验证和可靠性分析。参与者使用 2kmFIT-App 完成了两次 UKK 测试。使用应用程序和准确方法测量距离和 HR,并使用 UKK 测试方程估计 VO2max。

结果

有效性结果显示以下平均差异(应用程序减去标准):距离(-70.40,SD 51.47 米)、时间(-0.59,SD 0.45 分钟)、HR(-16.75,SD 9.96 次/分钟)和 VO2max(3.59,SD 2.01 ml/kg/min)。HR 发现中度有效性(组内相关系数 [ICC] 0.731,95%CI -0.211 至 0.942),VO2max 发现良好的有效性(ICC 0.878,95%CI -0.125 至 0.972)。可靠性结果显示以下平均差异(复测减去测试):应用程序距离(25.99,SD 43.21 米)、应用程序时间(-0.15,SD 0.94 秒)、步速(-0.18,SD 0.33 min/km)、应用程序 HR(-4.5,13.44 次/分钟)和应用程序 VO2max(0.92,SD 3.04 ml/kg/min)。应用程序 HR 具有良好的可靠性(ICC 0.897,95%CI 0.742-0.959),应用程序 VO2max 具有极好的有效性(ICC 0.932,95%CI 0.830-0.973)。当使用 Android 操作系统的应用程序时,观察到了所有这些发现,而当使用 iOS 时,有效性较差。

结论

本研究表明,2kmFIT-App 是一种新的、科学有效的可靠工具,能够使用 Android 但不能使用 iOS 移动操作系统客观、远程地估计 CRF、HR 和距离。然而,在使用应用程序时,应该考虑到 2kmFIT-App 计算 HR 所需的时间或温度环境等某些限制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcf0/7822719/6f63d2fddf25/mhealth_v9i1e14864_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验