Suppr超能文献

控制基于设计丝的生物材料二氧化硅改性的综合建模与实验方法

Integrated Modeling and Experimental Approaches to Control Silica Modification of Design Silk-Based Biomaterials.

作者信息

Dinjaski Nina, Ebrahimi Davoud, Ling Shengjie, Shah Suraj, Buehler Markus J, Kaplan David L

机构信息

Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States.

Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

出版信息

ACS Biomater Sci Eng. 2017 Nov 13;3(11):2877-2888. doi: 10.1021/acsbiomaterials.6b00236. Epub 2016 Aug 23.

Abstract

Mineralized polymeric biomaterials provide useful options toward mechanically robust systems for some tissue repairs. Silks as a mechanically robust protein-based material provide a starting point for biomaterial options, particularly when combined with silica toward organic-inorganic hybrid systems. To further understand the interplay between silk proteins and silica related to material properties, we systematically study the role of three key domains in bioengineered spider silk fusion proteins with respect to β-sheet formation and mineralization: (i) a core silk domain for materials assembly, (ii) a histidine tag for purification, and (iii) a silicification domain for mineralization. Computational simulations are used to identify the effect of each domain on the protein folding and accessibility of positively charged amino acids for silicification and predictions are then compared with experimental data. The results show that the addition of the silica and histidine domains reduces β-sheet structure in the materials, and increases solvent-accessible surface area to the positive charged amino acids, leading to higher levels of silica precipitation. Moreover, the simulations show that the location of the charged biomineralization domain has small effect on the protein folding and consequently surface exposure of charged amino acids. Those surfaces display correlation with the amount of silicification in experiments. The results demonstrate that the exposure of the positively charged amino acids impacts protein function related to mineralization. In addition, processing parameters (solvating agent, the method of β-sheet induction and temperature) affect protein secondary structure, folding and function. This integrated modeling and experimental approach provides insight into sequence-structure-function relationships for control of mineralized protein biomaterial structures.

摘要

矿化聚合物生物材料为某些组织修复的机械坚固系统提供了有用的选择。丝绸作为一种机械坚固的蛋白质基材料,为生物材料的选择提供了一个起点,特别是当与二氧化硅结合形成有机-无机杂化系统时。为了进一步了解与材料性能相关的丝绸蛋白和二氧化硅之间的相互作用,我们系统地研究了生物工程蜘蛛丝融合蛋白中三个关键结构域在β-折叠形成和矿化方面的作用:(i)用于材料组装的核心丝结构域,(ii)用于纯化的组氨酸标签,以及(iii)用于矿化的硅化结构域。通过计算模拟来确定每个结构域对蛋白质折叠以及硅化过程中带正电荷氨基酸可及性的影响,然后将预测结果与实验数据进行比较。结果表明,添加二氧化硅和组氨酸结构域会减少材料中的β-折叠结构,并增加带正电荷氨基酸的溶剂可及表面积,从而导致更高水平的二氧化硅沉淀。此外,模拟结果表明,带电荷的生物矿化结构域的位置对蛋白质折叠以及带电荷氨基酸的表面暴露影响较小。这些表面与实验中的硅化量具有相关性。结果表明,带正电荷氨基酸的暴露会影响与矿化相关的蛋白质功能。此外,加工参数(溶剂化剂)、β-折叠诱导方法和温度)会影响蛋白质的二级结构、折叠和功能。这种综合的建模和实验方法为控制矿化蛋白质生物材料结构的序列-结构-功能关系提供了见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验