BASF SE, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany.
Institut de Quimica Computacional i Catalisi, Universitat de Girona, c/M Aurelia Capmany 69, Girona, 17003, Spain.
J Comput Aided Mol Des. 2021 Apr;35(4):473-492. doi: 10.1007/s10822-020-00366-2. Epub 2021 Jan 9.
A major part of chemical conversions is carried out in the fluid phase, where an accurate modeling of the involved reactions requires to also take into account solvation effects. Implicit solvation models often cover these effects with sufficient accuracy but can fail drastically when specific solvent-solute interactions are important. In those cases, microsolvation, i.e., the explicit inclusion of one or more solvent molecules, is a commonly used strategy. Nevertheless, microsolvation also introduces new challenges-a consistent workflow as well as strategies how to systematically improve prediction performance are not evident. For the COSMO and COSMO-RS solvation models, this work proposes a simple protocol to decide if microsolvation is needed and how the corresponding molecular model has to look like. To demonstrate the improved accuracy of the approach, specific application examples are presented and discussed, i.e., the computation of aqueous pK values and a mechanistic study of the methanol mediated Morita-Baylis-Hillman reaction.
化学转化的一个主要部分是在液相中进行的,在液相中,要准确地对涉及的反应进行建模,还需要考虑溶剂化效应。隐式溶剂化模型通常可以非常准确地涵盖这些效应,但当特定的溶剂-溶质相互作用很重要时,它们可能会严重失效。在这种情况下,微溶剂化,即明确包含一个或多个溶剂分子,是一种常用的策略。然而,微溶剂化也带来了新的挑战——一致的工作流程以及如何系统地提高预测性能的策略并不明显。对于 COSMO 和 COSMO-RS 溶剂化模型,这项工作提出了一个简单的协议来决定是否需要微溶剂化,以及相应的分子模型应该是什么样子。为了证明该方法的准确性得到了提高,本文提出了具体的应用实例并进行了讨论,即计算水相的 pk 值和甲醇介导的 Morita-Baylis-Hillman 反应的机理研究。