Suppr超能文献

使用本地菌种进行生物接种在纳米沸石的影响下可提高[作物名称]的生长和产量。 (注:原文中“under the influence of nanozeolite”前缺少具体作物名称,翻译时补充了“[作物名称]”使句子逻辑更完整)

Bioinoculation using indigenous spp. improves growth and yield of under the influence of nanozeolite.

作者信息

Chaudhary Parul, Khati Priyanka, Chaudhary Anuj, Gangola Saurabh, Kumar Rajeew, Sharma Anita

机构信息

Department of Microbiology, College of Basic Sciences and Humanities G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India.

Crop Production Division, Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand 263601 India.

出版信息

3 Biotech. 2021 Jan;11(1):11. doi: 10.1007/s13205-020-02561-2. Epub 2021 Jan 2.

Abstract

UNLABELLED

Bio-inoculants play an important role for sustainable agriculture. Application of nanocompounds in the agriculture sector provides strength and is reported to enhance crop production but the combined effect of nanocompounds and plant growth-promoting rhizobacteria on plants has not been studied much. Therefore, the present study was planned to observe the effect of two plant growth promotory spp. along with nanozeolite on maize under field conditions using a randomized block design. Combined treatment of nanozeolite and bio-inoculants promoted plant height, root length, fresh and dry weight of shoot and root, chlorophyll, carotenoids, total sugar, protein and phenol contents in maize significantly over control. Enhanced level of catalase, peroxidase, superoxide dismutase, phenols, alcohols and acid-esters in treated plants over control showed their role in stress management. An increase of 29.80% in maize productivity over control was reported in the combined treatment of sp. and nanozeolite. Our results indicate that the application of bio-inoculants with nanozeolite showed a positive response on the health and productivity of maize plants. Hence, these may be used to enhance the productivity of different crops.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s13205-020-02561-2.

摘要

未标注

生物菌剂对可持续农业起着重要作用。纳米化合物在农业领域的应用增强了作用,并据报道能提高作物产量,但纳米化合物与植物促生根际细菌对植物的联合作用尚未得到充分研究。因此,本研究计划采用随机区组设计,在田间条件下观察两种植物促生菌以及纳米沸石对玉米的影响。纳米沸石与生物菌剂的联合处理显著促进了玉米的株高、根长、地上部和根部的鲜重与干重、叶绿素、类胡萝卜素、总糖、蛋白质和酚类物质含量,显著高于对照。处理植株中过氧化氢酶、过氧化物酶、超氧化物歧化酶、酚类、醇类和酸酯类水平高于对照,表明它们在胁迫管理中的作用。在[具体菌种]与纳米沸石的联合处理中,玉米产量比对照提高了29.80%。我们的结果表明,生物菌剂与纳米沸石的应用对玉米植株的健康和生产力表现出积极响应。因此,这些可用于提高不同作物的生产力。

补充信息

在线版本包含可在10.1007/s13205-020-02561-2获取的补充材料。

相似文献

1
Bioinoculation using indigenous spp. improves growth and yield of under the influence of nanozeolite.
3 Biotech. 2021 Jan;11(1):11. doi: 10.1007/s13205-020-02561-2. Epub 2021 Jan 2.
2
Impact of nanochitosan and spp. on health, productivity and defence response in under field condition.
3 Biotech. 2021 May;11(5):237. doi: 10.1007/s13205-021-02790-z. Epub 2021 Apr 25.
4
Effect of nanozeolite and plant growth promoting rhizobacteria on maize.
3 Biotech. 2018 Mar;8(3):141. doi: 10.1007/s13205-018-1142-1. Epub 2018 Feb 19.
5
Influence of nanosilicon dioxide along with bioinoculants on and its rhizospheric soil.
3 Biotech. 2020 Aug;10(8):345. doi: 10.1007/s13205-020-02329-8. Epub 2020 Jul 21.
8
Bacterial-Mediated Salinity Stress Tolerance in Maize ( L.): A Fortunate Way toward Sustainable Agriculture.
ACS Omega. 2023 May 26;8(23):20471-20487. doi: 10.1021/acsomega.3c00723. eCollection 2023 Jun 13.
9
Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize.
Microbiol Res. 2017 Sep;202:51-60. doi: 10.1016/j.micres.2017.06.001. Epub 2017 Jun 8.
10
Seed biostimulant Bacillus sp. MGW9 improves the salt tolerance of maize during seed germination.
AMB Express. 2021 May 25;11(1):74. doi: 10.1186/s13568-021-01237-1.

引用本文的文献

3
Synergistic impact of nanomaterials and plant probiotics in agriculture: A tale of two-way strategy for long-term sustainability.
Front Microbiol. 2023 May 3;14:1133968. doi: 10.3389/fmicb.2023.1133968. eCollection 2023.
4
5
Bionanotechnology in Agriculture: A One Health Approach.
Life (Basel). 2023 Feb 12;13(2):509. doi: 10.3390/life13020509.
6
Endophytes and their potential in biotic stress management and crop production.
Front Microbiol. 2022 Oct 17;13:933017. doi: 10.3389/fmicb.2022.933017. eCollection 2022.
7
Impact of nanophos in agriculture to improve functional bacterial community and crop productivity.
BMC Plant Biol. 2021 Nov 8;21(1):519. doi: 10.1186/s12870-021-03298-7.
8
Constraints and Prospects of Improving Cowpea Productivity to Ensure Food, Nutritional Security and Environmental Sustainability.
Front Plant Sci. 2021 Oct 22;12:751731. doi: 10.3389/fpls.2021.751731. eCollection 2021.
9
Impact of nanochitosan and spp. on health, productivity and defence response in under field condition.
3 Biotech. 2021 May;11(5):237. doi: 10.1007/s13205-021-02790-z. Epub 2021 Apr 25.

本文引用的文献

2
Influence of nanosilicon dioxide along with bioinoculants on and its rhizospheric soil.
3 Biotech. 2020 Aug;10(8):345. doi: 10.1007/s13205-020-02329-8. Epub 2020 Jul 21.
3
Effect of metal oxide nanoparticles on amino acids in wheat grains (Triticum aestivum) in a life cycle study.
J Environ Manage. 2019 Jul 1;241:319-327. doi: 10.1016/j.jenvman.2019.04.041. Epub 2019 Apr 20.
4
Effect of nanozeolite and plant growth promoting rhizobacteria on maize.
3 Biotech. 2018 Mar;8(3):141. doi: 10.1007/s13205-018-1142-1. Epub 2018 Feb 19.
6
Titania (TiO) nanoparticles enhance the performance of growth-promoting rhizobacteria.
Sci Rep. 2018 Jan 12;8(1):617. doi: 10.1038/s41598-017-18939-x.
8
Nanochitosan supports growth of Zea mays and also maintains soil health following growth.
3 Biotech. 2017 May;7(1):81. doi: 10.1007/s13205-017-0668-y. Epub 2017 May 12.
9
Phytotoxicity of CeO nanoparticles on radish plant (Raphanus sativus).
Environ Sci Pollut Res Int. 2017 May;24(15):13775-13781. doi: 10.1007/s11356-017-8880-1. Epub 2017 Apr 11.
10
Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.).
Plant Physiol Biochem. 2017 Jan;110:118-127. doi: 10.1016/j.plaphy.2016.09.004. Epub 2016 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验