Avraam Demetris, Wilson Rebecca, Butters Oliver, Burton Thomas, Nicolaides Christos, Jones Elinor, Boyd Andy, Burton Paul
Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK.
Department of Business and Public Administration, University of Cyprus, Nicosia, Cyprus.
EPJ Data Sci. 2021;10(1):2. doi: 10.1140/epjds/s13688-020-00257-4. Epub 2021 Jan 7.
Data visualizations are a valuable tool used during both statistical analysis and the interpretation of results as they graphically reveal useful information about the structure, properties and relationships between variables, which may otherwise be concealed in tabulated data. In disciplines like medicine and the social sciences, where collected data include sensitive information about study participants, the sharing and publication of individual-level records is controlled by data protection laws and ethico-legal norms. Thus, as data visualizations - such as graphs and plots - may be linked to other released information and used to identify study participants and their personal attributes, their creation is often prohibited by the terms of data use. These restrictions are enforced to reduce the risk of breaching data subject confidentiality, however they limit analysts from displaying useful descriptive plots for their research features and findings. Here we propose the use of anonymization techniques to generate privacy-preserving visualizations that retain the statistical properties of the underlying data while still adhering to strict data disclosure rules. We demonstrate the use of (i) the well-known -anonymization process which preserves privacy by reducing the granularity of the data using suppression and generalization, (ii) a novel deterministic approach that replaces individual-level observations with the centroids of each nearest neighbours, and (iii) a probabilistic procedure that perturbs individual attributes with the addition of random stochastic noise. We apply the proposed methods to generate privacy-preserving data visualizations for exploratory data analysis and inferential regression plot diagnostics, and we discuss their strengths and limitations.
数据可视化是统计分析和结果解释过程中使用的一种有价值的工具,因为它们以图形方式揭示了有关变量之间的结构、属性和关系的有用信息,而这些信息在表格数据中可能会被隐藏。在医学和社会科学等学科中,收集到的数据包含有关研究参与者的敏感信息,个人层面记录的共享和发布受数据保护法和伦理法律规范的控制。因此,由于数据可视化(如图表)可能与其他已发布的信息相关联,并用于识别研究参与者及其个人属性,其创建通常受到数据使用条款的禁止。实施这些限制是为了降低违反数据主体保密性的风险,然而,它们限制了分析师展示其研究特征和发现的有用描述性图表。在此,我们建议使用匿名化技术来生成保护隐私的可视化,这些可视化在保留基础数据统计属性的同时,仍遵守严格的数据披露规则。我们展示了(i)著名的 - 匿名化过程,该过程通过使用抑制和泛化来降低数据的粒度来保护隐私,(ii)一种新颖的确定性方法,该方法用每个最近邻的质心替换个人层面的观测值,以及(iii)一种概率程序,该程序通过添加随机噪声来扰动个人属性。我们应用所提出的方法来生成用于探索性数据分析和推断回归图诊断的保护隐私的数据可视化,并讨论它们的优点和局限性。