Suppr超能文献

数据安全港与信任:共同理解用于安全和伦理健康研究治理的可信研究平台。

Data Safe Havens and Trust: Toward a Common Understanding of Trusted Research Platforms for Governing Secure and Ethical Health Research.

机构信息

Institute of Health Informatics, University College London, London, United Kingdom.

出版信息

JMIR Med Inform. 2016 Jun 21;4(2):e22. doi: 10.2196/medinform.5571.

Abstract

In parallel with the advances in big data-driven clinical research, the data safe haven concept has evolved over the last decade. It has led to the development of a framework to support the secure handling of health care information used for clinical research that balances compliance with legal and regulatory controls and ethical requirements while engaging with the public as a partner in its governance. We describe the evolution of 4 separately developed clinical research platforms into services throughout the United Kingdom-wide Farr Institute and their common deployment features in practice. The Farr Institute is a case study from which we propose a common definition of data safe havens as trusted platforms for clinical academic research. We use this common definition to discuss the challenges and dilemmas faced by the clinical academic research community, to help promote a consistent understanding of them and how they might best be handled in practice. We conclude by questioning whether the common definition represents a safe and trustworthy model for conducting clinical research that can stand the test of time and ongoing technical advances while paying heed to evolving public and professional concerns.

摘要

随着大数据驱动的临床研究的进步,数据安全港的概念在过去十年中也得到了发展。它催生了一种框架,以支持安全处理用于临床研究的医疗信息,在符合法律、法规控制和伦理要求的同时,与公众合作,将其作为治理的伙伴。我们描述了 4 个分别开发的临床研究平台如何在整个英国范围内的 Farr 研究所发展成为服务,并描述了它们在实践中的共同部署特点。Farr 研究所是一个案例研究,从中我们提出了数据安全港的共同定义,即临床学术研究的可信平台。我们使用这个共同的定义来讨论临床学术研究界所面临的挑战和困境,以帮助促进对它们的一致理解,以及在实践中如何最好地处理它们。最后我们质疑这个共同的定义是否代表了一个安全和值得信赖的临床研究模型,这个模型能够经受住时间和持续技术进步的考验,同时关注不断变化的公众和专业人士的担忧。

相似文献

2
A National Network of Safe Havens: Scottish Perspective.
J Med Internet Res. 2022 Mar 9;24(3):e31684. doi: 10.2196/31684.
4
A profile of the Grampian Data Safe Haven, a regional Scottish safe haven for health and population data research.
Int J Popul Data Sci. 2023 Mar 16;4(2):1817. doi: 10.23889/ijpds.v4i2.1817. eCollection 2019.
5
Public involvement and engagement in scientific research and higher education: the only way is ethics?
Res Involv Engagem. 2024 May 31;10(1):50. doi: 10.1186/s40900-024-00587-x.
9
Data Safe Havens in health research and healthcare.
Bioinformatics. 2015 Oct 15;31(20):3241-8. doi: 10.1093/bioinformatics/btv279. Epub 2015 Jun 25.
10
Democratizing clinical-genomic data: How federated platforms can promote benefits sharing in genomics.
Front Genet. 2023 Jan 10;13:1045450. doi: 10.3389/fgene.2022.1045450. eCollection 2022.

引用本文的文献

1
3
Next-Generation Capabilities in Trusted Research Environments: Interview Study.
J Med Internet Res. 2022 Sep 20;24(9):e33720. doi: 10.2196/33720.
5
A National Network of Safe Havens: Scottish Perspective.
J Med Internet Res. 2022 Mar 9;24(3):e31684. doi: 10.2196/31684.
6
Considerations for an integrated population health databank in Africa: lessons from global best practices.
Wellcome Open Res. 2021 Aug 23;6:214. doi: 10.12688/wellcomeopenres.17000.1. eCollection 2021.
7
A deterministic approach for protecting privacy in sensitive personal data.
BMC Med Inform Decis Mak. 2022 Jan 28;22(1):24. doi: 10.1186/s12911-022-01754-4.
10
Privacy preserving data visualizations.
EPJ Data Sci. 2021;10(1):2. doi: 10.1140/epjds/s13688-020-00257-4. Epub 2021 Jan 7.

本文引用的文献

1
Big biomedical data and cardiovascular disease research: opportunities and challenges.
Eur Heart J Qual Care Clin Outcomes. 2015 Jul 1;1(1):9-16. doi: 10.1093/ehjqcco/qcv005.
2
How 'Big data' will drive future innovation.
Health Estate. 2016 Mar;70(3):59-64.
3
"Big data" and "open data": What kind of access should researchers enjoy?
Therapie. 2016 Feb;71(1):97-105, 107-14. doi: 10.1016/j.therap.2016.01.005. Epub 2016 Feb 3.
4
A multi-institution evaluation of clinical profile anonymization.
J Am Med Inform Assoc. 2016 Apr;23(e1):e131-7. doi: 10.1093/jamia/ocv154. Epub 2015 Nov 13.
5
Slow and costly access to anonymised patient data impedes academic research.
BMJ. 2015 Sep 25;351:h5087. doi: 10.1136/bmj.h5087.
6
Combining Health Data Uses to Ignite Health System Learning.
Methods Inf Med. 2015;54(6):479-87. doi: 10.3414/ME15-01-0064. Epub 2015 Sep 17.
7
The ethics weathervane.
BMC Med Ethics. 2015 Sep 4;16:58. doi: 10.1186/s12910-015-0054-4.
8
Data Safe Havens in health research and healthcare.
Bioinformatics. 2015 Oct 15;31(20):3241-8. doi: 10.1093/bioinformatics/btv279. Epub 2015 Jun 25.
10
Selling health data: de-identification, privacy, and speech.
Camb Q Healthc Ethics. 2015 Jul;24(3):256-71. doi: 10.1017/S0963180114000589.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验