Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
Department of Biomedical Engineering, City College of New York of CUNY, New York, NY, USA.
Sci Rep. 2021 Jan 14;11(1):1271. doi: 10.1038/s41598-020-80279-0.
Two challenges to optimizing transcranial direct current stimulation (tDCS) are selecting between, often similar, electrode montages and accounting for inter-individual differences in response. These two factors are related by how tDCS montage determines current flow through the brain considered across or within individuals. MRI-based computational head models (CHMs) predict how brain anatomy determines electric field (EF) patterns for a given tDCS montage. Because conventional tDCS produces diffuse brain current flow, stimulation outcomes may be understood as modulation of global networks. Therefore, we developed a network-led, rather than region-led, approach. We specifically considered two common "frontal" tDCS montages that nominally target the dorsolateral prefrontal cortex; asymmetric "unilateral" (anode/cathode: F4/Fp1) and symmetric "bilateral" (F4/F3) electrode montages. CHMs of 66 participants were constructed. We showed that cathode location significantly affects EFs in the limbic network. Furthermore, using a finer parcellation of large-scale networks, we found significant differences in some of the main nodes within a network, even if there is no difference at the network level. This study generally demonstrates a methodology for considering the components of large-scale networks in CHMs instead of targeting a single region and specifically provides insight into how symmetric vs asymmetric frontal tDCS may differentially modulate networks across a population.
优化经颅直流电刺激 (tDCS) 的两个挑战是在通常相似的电极布局之间进行选择,以及解释个体间反应的差异。这两个因素与 tDCS 布局如何决定大脑中的电流流动有关,而电流流动是在个体之间或个体内部考虑的。基于 MRI 的计算头模型 (CHM) 预测给定 tDCS 布局的大脑解剖结构如何决定电场 (EF) 模式。由于传统 tDCS 产生弥散的大脑电流流动,因此刺激效果可以理解为对全局网络的调制。因此,我们开发了一种以网络为导向而不是以区域为导向的方法。我们特别考虑了两种常见的“额叶”tDCS 布局,它们名义上针对背外侧前额叶皮层;不对称的“单侧”(阳极/阴极:F4/Fp1)和对称的“双侧”(F4/F3)电极布局。构建了 66 名参与者的 CHM。我们表明,阴极位置会显著影响边缘网络中的 EF。此外,使用大规模网络的更精细分区,即使在网络级别没有差异,我们也发现了一些网络内主要节点的显著差异。这项研究通常证明了在 CHM 中考虑大规模网络组件的方法,而不是针对单个区域,特别是提供了关于对称与不对称额叶 tDCS 如何在人群中差异调节网络的见解。