Department of Radiology, Seay Biomedical Building, University of Texas Southwestern Medical Center, 2201 Inwood Road, Dallas, TX, 75390, USA.
Eur Radiol. 2021 Jul;31(7):4872-4885. doi: 10.1007/s00330-020-07640-9. Epub 2021 Jan 15.
This review provides an overview of current applications of deep learning methods within breast radiology. The diagnostic capabilities of deep learning in breast radiology continue to improve, giving rise to the prospect that these methods may be integrated not only into detection and classification of breast lesions, but also into areas such as risk estimation and prediction of tumor responses to therapy. Remaining challenges include limited availability of high-quality data with expert annotations and ground truth determinations, the need for further validation of initial results, and unresolved medicolegal considerations. KEY POINTS: • Deep learning (DL) continues to push the boundaries of what can be accomplished by artificial intelligence (AI) in breast imaging with distinct advantages over conventional computer-aided detection. • DL-based AI has the potential to augment the capabilities of breast radiologists by improving diagnostic accuracy, increasing efficiency, and supporting clinical decision-making through prediction of prognosis and therapeutic response. • Remaining challenges to DL implementation include a paucity of prospective data on DL utilization and yet unresolved medicolegal questions regarding increasing AI utilization.
这篇综述概述了深度学习方法在乳腺影像学中的当前应用。深度学习在乳腺影像学中的诊断能力不断提高,使得这些方法不仅有望应用于乳腺病变的检测和分类,还可能应用于风险评估和预测肿瘤对治疗的反应等领域。仍存在的挑战包括缺乏具有专家注释和真实数据的高质量数据,需要进一步验证初始结果,以及尚未解决的医学法律方面的考虑。
深度学习(DL)继续推动人工智能(AI)在乳腺成像方面所能达到的极限,与传统的计算机辅助检测相比具有明显优势。
基于深度学习的人工智能有可能通过提高诊断准确性、提高效率以及通过预测预后和治疗反应来支持临床决策,从而增强乳腺放射科医生的能力。
深度学习实施仍存在的挑战包括缺乏关于深度学习利用的前瞻性数据,以及关于增加人工智能利用的尚未解决的医学法律问题。